• Title/Summary/Keyword: 피로강도변화

Search Result 139, Processing Time 0.027 seconds

A Study on the Mechanical Strength Change by Thermal Aging of 2.25Cr-1Mo Steel (발전설비용 2.25Cr-1Mo 강의 시효에 의한 기계적 강도 특성 변화에 대한 연구)

  • Yang, Hyeon-Tae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1771-1778
    • /
    • 2000
  • The purpose of this study is to investigate the thermal embrittlement and the mechanical properties of 2.25Cr-1Mo steel aged at high temperature for the extended periods. Original, aged artificiall y and used material were tested to obtain the tensile strength, hardness and impact absorbed energy. Tensile strength, hardness and impact absorbed energy decreased with the increasing aging time. The carbide morphology with the thermal embrittlement was found to contribute to the mechanical property change by X-Ray diffraction method.

S-N Fatigue Strength of Small Diameter Branch Welded Pipe with Variation of Welding Shapes and Welding Procedures (용접부의 형상과 공정변화에 따른 소구경 분기배관의 피로강도 특성평가)

  • 백종현;김우식
    • Journal of Welding and Joining
    • /
    • v.22 no.3
    • /
    • pp.50-55
    • /
    • 2004
  • S-N fatigue tests were conducted to investigate the fatigue strength of small diameter socket and butt welded joints made of carbon steels. Experimental parameters were pipe diameter, throat depth, shape of socket welds and welding procedure. Filler metals used in SMAW and GTAW procedure were E9016-G with diameter of 4.0 m and ER70S-G with diameter of 2.4 m. API 5L Gr.B pipes were adopted as a small diameter branch pipes. All socket fittings were machined from ASTM A105 carbon steel. Tensile strength was not affected by the welding procedure. Fatigue strength in socket weld joints increased with increasing pipe diameter, area of weld metal and weld leg length of pipe side.

Effects of Myofascial Release on Nerve Conduction Studies and Pain Scale in Middle-Aged Women (중년여성에서 근막이완요법이 신경전도와 통증에 미치는 영향)

  • Yon, Jung-Min;Lee, Hyun-Kyung;Lee, Og-Kyoung
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.425-432
    • /
    • 2014
  • The purpose of this study was to examine the effect of myofascical release (MR) on the degree of pain and nerve conduction velocity (NCV) in middle-aged women. Participants were 28 middle-aged women and MR carried out three times (1, 3, 5 day) at intervals of two times. We did survey about changes of pain before the MR and how they changed after the MR. Also measured pressure pain threshold (PPT) and visual analogue scale (VAS) by using the algometer at trapezius muscle. In median nerve, we did motor nerve conduction velocity (MNCV) test and sensory nerve conduction velocity (SNCV) test for measuring incubation period, amplitude and nerve conduction. The most painful time was 18~21 and the most painful part was shoulder. The pain scale, PPT and VAS after the MR had significantly decreased than before the MR. The latency was significantly decreased and the amplitude was significantly increased in the MNCV and the latency was significantly decreased in the SNCV after the MR. Also it was effective in ameliorating pain scale and latency of NCV. Consequently, the MR can be effective in prevent pain scale caused by fatigue in middle-aged women as replacement therapy.

Effect of cold water immersion after rowing ergometer on blood fatigue substance, reactive oxygen species and anti-oxidation enzyme in rowing athletes (조정 선수의 로잉 에르고미터 수행 후 저온침수 처치가 혈중 피로 물질, 활성산소 및 항산화 효소에 미치는 영향)

  • Hyun-Wook Hong;Su-han Koh;Tae-kyu Kim;Min-Kyo Kim;Do-yeon Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.761-772
    • /
    • 2023
  • The purpose of this study is to help a recovery of fatigue through the effect of cold immersion treatment after rowing ergometer on blood fatigue substance, MDA and SOD in rowing athletes. For this, 10 subjects participated in this study and we divided them into cold water immersion group (CWI, n=10), non-cold immersion group (NCI, n=10). The exercise program was performed to 2000 m rowing ergometer for maintaining high intensity. The data was collected with regard to the interaction effect of the group and time among the CWI and NCI, ANOVA was used. As the post-hoc test, Bonferroni test was used. The significance was set at .05 and the following conclusions were deduced. For lactic acid, there were the main effect of time (p<.001) and significant difference in the both group (p<.001). Also, LDH were significant difference in the each group (p<.05). For MDA, there were the interaction between group and time (p<.05) and the main effect of group (p<.05) and time (p<.001). SOD were indicated main effect of group and time (p<.05), there was significant difference between each group in the after 30 min recovery (p<.05). Collectively, The results of this study suggest that positive effect on blood fatigue substances, reactive oxygen species and anti-oxidation enzyme through cold water immersion intervention. Therefore, we strongly recommend that performing the cold immersion intervention would be beneficial after high intervention exercise.

Comparative Study on the Bond Strength between Direct Tensile Test and Indirect Tensile Test for Bonded Concrete Overlay (직접인장 및 간접인장 실험방법에 따른 접착식 콘크리트 덧씌우기의 부착강도 비교 고찰)

  • Kim, Young Kyu;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1153-1163
    • /
    • 2013
  • Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance based on being bonded together, both for the overlay layer and the existing pavement which perform as one monolithic layer. Therefore, it is important to have a suitable bond strength criteria for long term performance of bonded concrete overlay. This study aimed to investigate the affecting of bond strength on various bond characteristics, and to compare the bond strength between direct tensile test and indirect tensile test due to various conditions such as overlay materials, compressive and flexure strength of existing pavement, and deterioration status of existing pavement. As a result of this study, bond strength occurred by both of direct and indirect tensile test due to monotonic load is highly correlated such as coefficient of determination of 0.75 and P-value of 0.002. However, bond strength by indirect tensile test was relatively higher than bond strength by direct tensile test. It was known that correlation between direct and indirect tensile test was possible to use the characteristics analysis of bond fatigue behavior based on bond strength due to cyclic load which can simulate real field behavior of bonded concrete overlay.

Bonding Property and Reliability for Press-fit Interconnection (Press-fit 단자 접합특성 및 신뢰성)

  • Oh, Sangjoo;Kim, Dajung;Hong, Won Sik;Oh, Chulmin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.63-69
    • /
    • 2019
  • Soldering technology has been used in electronic industry for a long time. However, due to solder fatigue characteristics, automotive electronics are searching the semi-permanent interconnection technology such as press-fit method. Press fit interconnection is a joining technology that mechanically inserts a press fit metal terminal into a through hole in a board, and induces a strong bonding by closely contacting the inner surface joining of the through hole by plastic deformation of press-fit terminal. In this paper, the bonding properties of press-fit interconnection are investigated with PCB hole size and surface finishes. In order to compare interconnection reliability between the press fit and soldering, the change in resistance of the press-fit and soldering joints was observed during thermal shock test. After thermal cycling, the failure modes are investigated to reveal the degradation mechanism both press-fit and soldering technology.

Ideal body modeling of porous rock by frost-thawing (다공질암의 동결융해 현상에 대한 이상물체 모델의 적용성 연구)

  • Han, Heui-Soo;Back, Yoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.399-405
    • /
    • 2010
  • The accumulated displacements and fatigues of rock are increased by the stress-hysteresis, induced from repeated frost-thawing. Also the shear strength is decreased by them continuously. The stress-hysteresis is affected by the atmospheric temperature changes, whose behavior is visco-elasticity, usually. Therefore, to do ideal body analysis, Kelvin model could be used to analyze the frost-thawing behavior in winter. In general, rock slope failure occurs by the deterioration of rocks, which is caused by the repetition of freezing-thawing process. In order to keep the safety of such rock mass structures the deterioration process of rock needs to be described quantitatively using some meaningful parameters. In this work, the deterioration process in freezing-thawing cycle of tuff, which is a famous soft porous rock, is investigated through laboratory tests and successfully described as a differential equation for the change of porosity. And then, the deterioration of the mechanical properties of rock, such as Young's modulus and uniaxial compressive strength, are quantitatively described as a function of the porosity.

Development of Oxo-biodegradable Bio-plastics Film Using Agricultural By-product such as Corn Husk, Soybean Husk, Rice Husk and Wheat Husk (농산부산물인 옥피, 대두피, 왕겨, 소맥피를 이용한 산화생분해 바이오플라스틱 필름 개발)

  • You, Young-Sun;Kim, Mi-Kyung;Park, Myung-Jong;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2014
  • Biomass-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. This article described the effect of the additions of oxo-biodegradable additive, 4 kinds of plant biomass, unsaturated fatty acid, citric acid in the properties of polyethylene films. Bio films were prepared using a variety of biomasses and tested for feasibility as a food packaging film. Mechanical properties such as tensile strength and percent elongation at break were evaluated. Husk biomasses from such as corn, soybean, rice, and wheat were pulverized using air classifying mill (ACM) and four different types of packaging films with thickness of $50{\mu}m$ were prepared using the pulverized biomass and low density polyethylene/linear low density polyethylene. The packaging film with wheat husk biomass was found to have greater mechanical properties of elongation and tensile strength than the other samples. Biodegradability of bio film was measured to be 51.5% compared to cellulose.

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating (형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Lee, En-Seon;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.

Evaluation of Mechanical and Interfacial Properties between Glass Fiber and Epoxy Resin after NaCl Solution and Aging Treatments (염수 노화처리 일수에 따른 유리섬유 에폭시간의 기계적 및 계면 물성 변화 평가)

  • Shin, Pyeong-Su;Wang, Zuo-Jia;Kwon, Dong-Jun;Choi, Jin-Yeong;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Although it is important to have high strength of each of fiber and matrix, interface between fiber and matrix is most important. If NaCl water penetrates the interface, that area will be weak. So experiment about increasing interfacial strength is in process. In this study, the change of properties by mechanical, interfacial and micromechanical tests was observed after NaCl and aging treatment. The changes in mechanical properties of glass fiber were investigated using single-fiber tensile test. Interfacial properties between glass fiber and epoxy resin were evaluated using nondestructive acoustic emission (AE) and micromechanical test applied to fatigue test. Through change of fatigue properties, relative interfacial properties were evaluate. In conclusion, glass fiber diameter decreased and the reduction of mechanical and interfacial was observed with NaCl solution and aging treatment.