• Title/Summary/Keyword: 피난성능

Search Result 208, Processing Time 0.027 seconds

The Performance of the Combined Operation of Sprinkler and Smoke Curtain for Smoke Control in the Sloped Stairway Corridor (경사통로로 전파되는 연기에 대한 스프링클러와 제연커텐의 통합제연성능)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.1-12
    • /
    • 2006
  • In this study, CFD computer simulations by FDS are carried out in order to confirm the performance of the combined operation of both sprinkler system and smoke curtain of 0.54 m depth installed for cooling and blocking the smoke which propagates beneath the sloped ceiling of a stairway corridor of which dimensions are 17.92 m long, 4.00 m wide, and 6.12 m high. It is shown that the response time of sprinklers decreases with fire size and it increases more about 1.1 second in case without smoke curtain than in case with smoke curtain, that the time of smoke transport from the fire source to the stairway outlet decreases considerably with fire size, and that the delay effect of smoke transport is not related to the sprinkler system, whether it is operated or not. This study shows that the combined operation of both sprinkler system and smoke curtain is very effective in smoke cooling, but it is a little for effect on smoke blockage. Although the hazard of skin burn due to radiative heat flux from hot smoke layer is decreased by spray cooling effect, the hazard of smoke suffocation and the weakening of visibility is increased by smoke downdrag and the turbulence of smoke-air mixing due to water spray. These conditions may result in preventing occupants from going out of the stairway during evacuation.

A Study on the Application of the Regulation of the Interior Materials in Entertainment Occupancy (다중이용업소의 내장재 규정의 적용에 관한 연구)

  • 이주헌;윤명오;김운형
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.100-107
    • /
    • 2001
  • A Interior material, a main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Nonetheless, it has been used recklessly with undue attention to its contribution to fire in particular in entertainment occupancy and causes many victims in fire. Therefore, this study attempts to examine the current use of interior material in Korea and find out what to be improved and enhanced in terms of related regulations. Based on the comparison and analysis of the Korea regulation with those of advanced nations, suggestions are made for an effective and efficient improvement and complement to the current system. What can be suggested from this study are as follows. The use of interior material should be controlled under the unified regulation of fire-safety codes. Code should be set up so that the current construction enforcement should be applied in retroactive to those entertainment buildings that obtained a license prior to the implementation of the system certifying that the building is fire-resistant and fire-protective. The legislation should be made to control the fire-protection facilities of small-sized, underground entertainments. It should be obliged to present the blueprint displaying the use of interior material at the time of changing occupancy. Or, it should be compelled to report changes that go way without permit to the administrative office. A compulsory provision should be set up to have a fire-resistant performance to movable furniture. The classification index designating the fire hazard of interior material by flame spread rate and smoke toxicity and its test method should be established.

  • PDF

Measurement of the Device Properties of Photoelectric Smoke Detector for the Fire Modeling (화재모델링을 위한 광전식 연기감지기의 장치물성 측정)

  • Cho, Jae-Ho;Mun, Sun-Yeo;Hwang, Cheol-Hong;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.62-68
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially required for the reliable design of evacuation safety using the fire modeling. The main objective of the present study is to measure input information in order to predict the accurate activation time of photoelectric smoke detector adopted in fire dynamics simulator (FDS) recognized a representative fire model. To end this, the fire detector evaluator (FDE) which could be measured the device properties of detector was used, and the input information of Heskestad and Cleary's models was obtained for a spot-type photoelectric smoke detector. In addition, the activation times of smoke detector predicted using default values into FDS and measured values in the present study were quantitatively compared. As a result, the Heskestad model could result in an inaccurate the activation time of photoelectric smoke detector compared to the Cleary model. In addition, there was a distinct difference between the default values used into FDS and the measured values in terms of device properties of smoke detector, and thus the activation time also showed a significant difference.

A Study on the Improving Speech Intelligibility of Emergency Broadcast Equipment in the Apartments (공동주택 내 비상방송설비의 음성명료도 실태 분석 및 재실자 인지성 개선방안 연구)

  • Oh, So-Young;Cho, Hyun-Min;Lee, Young-Ju;Lee, Min-Joo;Yoon, Myung-Oh
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.60-68
    • /
    • 2018
  • Due to the complicated plan structure of the apartment units and the improved room-to-room sound insulation performance, it is difficult to communicate and recognize the fire situation by emergency broadcast equipment. In this study, speech intelligibility was measured and analyzed for three types of apartment unit by emergency broadcast equipment on various measurement points. Simulations were also conducted to improve the speech intelligibility. As a result of field measurements 72, 84, and 101 Type were not satisfied with NFSC standard of 90 dBA at the point of 1 m distance from source. In addition, it was evaluated that 75 dBA and CIS 0.7 of NFPA standard was not satisfied at all measurement points except for the 72 Type at living room point with door opened condition. Based on the door opened condition of the bedroom, it satisfied the NFPA of 75 dBA and CIS 0.7 in each bedroom when more than 90 dBA was satisfied at the 1 m separation point provided in NFSC standard.

Estimation of Safety in Railway Tunnel by Using Quantitative Risk Assessment (QRA를 이용한 철도터널 방재 안전성 평가)

  • Kim, Do-Sik;Kim, Do-Hyung;Kim, Woo-Sung;Lee, Du-Hwa;Lee, Ho-Seok
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.357-367
    • /
    • 2006
  • Recently, as the construction of new railway and the relocation of existing line increase, tunnel structures grow longer. The railway fire accidents in long tunnel bring large damages of human life and disaster. The interest of safety in long tunnel have a growing and the safety standard of long tunnel is tightening. For that reason, at the planning of long tunnel, the optimum design of safety facility in long tunnel for minimizing the risks and satisfying the safety standard is needed. For the reasonable design of long railway tunnel considering high safety, qualitative estimation for tunnel safety is required. In this study, QRA (Quantitative Risk Assessment) technique is applied to design of long railway tunnel for assuring the safety function and estimating the risk of safety. The case study for safety design in long railway tunnel is tarried out to verifying the QRA technique for two railway tunnels. Thus, the inclined and vertical shaft for escape way and safety facilities in long tunnel are planned, and the risks of tunnel safety for each case are estimated quantitatively.

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

Fire Alarm Sound Transmission in Apartment Units (공동주택에서의 화재경보음 전달)

  • Jeong, Jeong-Ho
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.67-75
    • /
    • 2018
  • To reduce the number of casualties in the case of fire, an alarm sound needs to be delivered to the people who remain in the apartment unit. On the other hand, it was reported that the fire alarm sound generated in the elevator hall was not delivered sufficiently to the people staying in the apartment units. In this study, the background noise level and noise level generated in an apartment unit were measured during the day and night time. In addition, the transmission of the fire alarm sound into the each room of apartment units was simulated and compared with the background noise level. The fire alarm sound generated in the elevator halls was reduced by the fire door and doors, and was not transmitted sufficiently into the internal spaces of the apartment units. Starting evacuation action was difficult after hearing the fire alarm sound generated outside the apartment units. To improve the transmission of an alarm sound to the inner spaces of apartment units, an acoustic simulation was carried out for cases where the alarm sound generator was installed on a wall-pad in the living room and the alarm sound generator was installed on the ceiling of each rooms in apartment units. Background noise of + 15 dB and 75 dB (A) were satisfied when alarm sound generator was installed on the ceiling of each room.

A study on the effect of gusty wind on smoke control performance in road tunnel (돌풍이 도로터널의 제연성능에 미치는 영향 연구)

  • Baek, Doo-San;Cho, Hyeon-Seok;Lee, Seung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.95-108
    • /
    • 2022
  • The increase in the use time of tunnel users due to the lengthening of the road tunnel may increase the evacuation time in case of fire, resulting in a large number of casualties. In order to reduce the casualties caused by fire, the "Road Tunnel Design Manual, Part 6 Tunnel" and "Road Tunnel Disaster Prevention Facility Installation and Management Guidelines" stipulate that ventilation facilities should be installed along with the extension of the tunnel. The ventilation system design factor considers the wind speed of the external natural wind to be at least 2.5 m/s, and it is applied upward according to the characteristics of the tunnel. As a result of analyzing the five-minute average wind speed data in the Daegwallyeong region for the past 6 years, it was analyzed that 15.8% of the windy days were winds of 10 m/s or more, and the maximum was 20 m/s. Therefore, in this study, when a fire occurs in a tunnel, the pattern of natural wind flowing into the tunnel and the backlayering distance of the tunnel fire smoke according to the maximum wind speed were analyzed. As a result, it was analyzed that a backflow of up to 490 m occurs when a gust of 20 m/s blows.