• Title/Summary/Keyword: 플리니안 분화

Search Result 4, Processing Time 0.019 seconds

Volcanological Interpretation of Historic Record of 1702 Fallout-ash from the Mt. Baegdusan (백두산 화산의 1702년 강하화산재 기록에 대한 화산학적 해석)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.243-250
    • /
    • 2011
  • This study considers the historical eruption record in 1702 from the volcanological point of view, which is presumed to have occurred from Mt. Baegdusan volcano. The minium volume of erupted materials is estimated to be $1.2km^3$ when calculated with an empirical formula using an isopach line obtained from two points 140 km away from the vent. The 1702 eruption was a paroxysmal one with VEI of 5. The historical record described a deposition of wind-modified fallout ash by movement of hot ash cloud. To prepare for the future eruption, we have to analyze historical literatures and understand characteristics of volcano.

Volcanological Interpretation of Historic Record of AD 79 Vesuvius eruption (베수비오 화산의 79년 분화 기록에 대한 화산학적 해석)

  • Eun Jeong Yang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • The Pliny Letter, the first historical record of volcanic eruptions and disasters on Earth, was studied to better understand the Vesuvius' eruption patterns in 79 AD. The two-day eruption, which began at 1 a.m. on August 24th 79 AD, produced large amounts of volcanic ash and pumice, which were carried by the wind and fell on nearby cities. Furthermore, during the eruption, fast-moving pyroclastic flows flowed down the volcano's sides, and several phenomena such as earthquakes and tsunamis occurred. Cities near Mount Vesuvius were buried and destroyed by volcanic ash and pyroclastic flows. Previous studies were collected, analyzed, and investigated and the scope of damage was chosen from Pompeii, Herculaneum, Stabiae, and Oplontis. The sedimentary stratigraphy and thickness vary according to location and distance from Vesuvius in each region. Within the depositional layers, the remains of residents who died during the eruption were also discovered, and 1,150 remains have been discovered in Pompeii, 306 in Herculaneum, 111 in Stabiae, and 54 in Oplontis, but the exact number of people who killed is unknown. The eruption that exhibited the pattern seen in AD 79 was named the Plinian eruption after Pliny and classified as a new type of eruption as a result of Pliny's detailed description of the eruption.

Volcanological Interpretation of Historical Eruptions of Mt. Baekdusan Volcano (백두산의 역사시대 분화 기록에 대한 화산학적 해석)

  • Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.456-469
    • /
    • 2013
  • This study is performed to find out the eruptive events of the historical period recorded in literature, which have been recognized and regarded as ones from Mt. Baekdusan, and to make volcanological interpretations of the eruptive events. Since the Millennium eruption, more than 31 eruptive events have been discovered, most of which are Plinian eruptions with volcanic ash that dispersed into the regions in the vicinity of the volcano. The 1903 record includes the event of the phreatomagmatic or vulcanian eruption that occurred within the Cheonji caldera lake. Based on the eruption records of the historical period and the 2002 precursor unrest to volcanic eruptions, Mt. Baekdusan has been evaluated and regarded as an active volcano that has the potential to erupt in the future.

TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan (백두산에서 소규모 분화로 발생 가능한 화쇄류에 대한 TITAN2D 시뮬레이션 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Kim, Sunkyeong;Chang, Cheolwoo;Cho, Eunil;Yang, Innsook;Kim, Yunjeong;Kim, Sanghyun;Lee, Kilha;Kim, Seongwook;Macedonio, Giovanni
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.615-625
    • /
    • 2013
  • Many eruptions of Mt. Baekdusan volcano have been recorded in the historical literatures, and there were unrest precursors in 2002. Based on the geological survey results, it has been recognized that Mt. Baekdusan's Plinian eruptions had caused ashfall, followed by the occurrence of pyroclastic flows, which were caused by the collapse of eruption column. Therefore, we simulated the range of the impacts of pyroclastic flows, which were caused by small eruptions from a specific crater. Based on the simulation results, it can be interpreted that, when the pyroclastic flows are caused by the eruption column collapse from an eruption with less than VEI 3, the impacts will range from the outer rim of the caldera to the mountain slope 7 km at the maximum distance. Furthermore, it is interpreted that, when the eruption column occurs by the crater located inside the caldera, most will be deposited inside the caldera and what overflows will be deposited thickly mostly in the north valley, the upper stream region of Erdaobaihe.