• Title/Summary/Keyword: 플룸

Search Result 152, Processing Time 0.03 seconds

An Approximation Method for the Estimation of Exposed dose due to Gamma - rays from Radioactive Materials dispersed to the Atmoshere (대기로 확산된 방사성물질로부터 방출되는 감마선에 의한 피폭선량을 계산하기 위한 근사화 방법)

  • Kim, T.W.;Park, C.M.;Ro, S.G.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 1990
  • The dispersing model of radioactive plume in the atmosphere was assumed to form finite ellipseshaped volumes rather than a single plume and gamma absorbed doses from the plume were computed using the proposed model. The results obtained were compared with those computed by the Gaussian plume and the circular approximation models. The results computed by the proposed ellipse-shaped approximation model were close to those by the Gaussian plume model. and more accurate than those by the circular approximation model. The computing time for the proposed approximation model was one fortieth of that for the Gaussian plume model.

  • PDF

An Analysis on Plume Behaviour of Rocket Engine with Ground Condition at High Altitude Engine Test Facility (고공시험설비에서 로켓엔진의 지상시험 플룸 거동 해석)

  • Kim, Seong-Lyong;Lee, SeungJae;Han, YoungMin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.112-115
    • /
    • 2017
  • We analyzed the rocket engine flow to check whether the possibility of the ground test and the equipment safety problems in the high altitude engine test facility. The test condition is that the vacuum chamber is open and the coolant water is injected into the supersonic diffuser. The analysis uses two-dimensional axisymmetry with a mixture of plume, air, and cooling water. As a result, the ground test was possible up to the cooling water flow rate of 200 kg/sec. However, due to the back flow of the initial plume, the vacuum chamber is exposed to high temperature, and at the same time, the inside of the vacuum chamber is contaminated due to the reverse flow of the cooling water. Therefore, sufficient insulation measures and work for pollution avoidance should be preceded.

  • PDF

Numerical Simulation of an Electric Thruster Plume Behavior Using the PIC-DSMC Method (PIC-DSMC 방법을 이용한 전기추력기 플룸 해석)

  • Kang, Sang Hun;Jun, Eunji
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • To develop technologies for the stable operation of electric propulsion systems, the exhaust plume behavior of electric thrusters was studied using PIC-DSMC(particle-in-cell and direct simulation Monte Carlo). For the numerical analysis, the Simple Electron Fluid Model using Boltzmann relation was employed, and the charge and momentum exchanges due to atom-ion collisions were considered. The results of this study agreed with the plasma potentials measured experimentally. Near the thruster exit, active collisions among particles and charge exchanges created slow ions and fast atoms, which were expected to significantly affect the trajectory and velocity of the thruster exhaust plume.

Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume (비행조건에 따른 항공기 배기플룸의 IR 신호 특성)

  • Go, Gun-Yung;Kim, Man-Young;Baek, Seung-Wook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.5
    • /
    • pp.58-66
    • /
    • 2012
  • The IR signature and radiative base heating from an aircraft plume have been important factors for aircraft survivability in modern battle fields. In order to enhance the aircraft survivability and reduce the base heating, infrared signatures emitted from an aircraft exhaust plume should be determined. In this work, therefore, IR signatures and radiative base heating characteristics are examined in the plume exhausted from the aircraft with operating at altitude of 5 km in M=0.9 and 1.6, respectively. As a result, it is found that the particular wavelength IR signature has high spectral characteristics because of $H_2O$ and $CO_2$ gases in the plume, and the radiative heat flux coming into the base plane increases with higher Mach number and shorter distance.

Investigation of the Radiative Heating from Aircraft Plume with Particles (입자에 의한 항공기 플룸의 열복사 가열에 관한 연구)

  • Go, Gun-Yung;Yi, Kyung-Joo;Lee, Sung-Nam;Kim, Won-Cheol;Baek, Seung-Wook;Kim, Man-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.737-744
    • /
    • 2012
  • The finite volume method for radiation is applied for the analysis of radiative base heating by SE and PE of the aircraft exhaust plume. The exhaust plume is considered as an absorbing, emitting, and scattering medium, while the base plane is assumed to be cold and black. The radiative properties of non-gray gases are obtained through the WSGGM, and the particle is modelled as spheres. The present method is validated by comparing the results with those of the backward Monte-Carlo method and then the radiative base heating characteristics are analyzed by changing such various parameters as particle concentration, temperature, and scattering phase function. The results show that the radiative heat flux coming into the base plane decreases with altitude and distance, but it increases as the particle temperature increases. The forward scattering of particles increases PE while it decreases SE.

Numerical Analysis of Rocket Exhaust Plume with Equilibrium Chemistry and Thermal Radiation (화학 평형과 열복사를 포함한 로켓 플룸 유동 해석)

  • Shin Jae-Ryul;Choi Jeong-Yeol;Choi Hwan-Seck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.35-45
    • /
    • 2005
  • Numerical study is carried out to investigate the effects of chemistry and thermal radiation on the rocket plume flow field at various altitudes. Navier-Stokes equations for compressible flows were solved by a fully-implicit TVD code based on the finite volume method. An infinitely fast chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thick media were incorporated with the fluid dynamics code. The plume flow fields of a kerosene-fueled rocket flying at Mach number zero at sea-level, 1.16 at altitude of 5.06 km and 2.90 at 17.34 km were numerically analyzed. Results showed the plume structures at different altitude conditions with the effects of chemistry and radiation. It is understood that the excess temperature by the chemical reactions in the exhaust gas may not be ignored in the view point of propulsion performance and thermal protection of the rocket base, especially at higher altitude conditions.

Numerical Study on the CO and NO of Rocket Plume as the Type of Water Injection in the Flame Guiding Duct (화염유도로 냉각수 분사방식에 따른 로켓 플룸의 CO와 NO 반응의 수치해석)

  • Kim, Seong-Lyong;Kim, Seung-Han;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2015
  • A numerical study has been conducted on CO after burning and NO generation of the rocket plume as the cooling water injected to the rocket plume. The present study shows that the cooling water has a role of increasing the degree of CO after burning and reducing NO generation. However the effect varies as the injection configuration of the cooling water. When the cooling water is injected at the side of the plume, NO generation is dramatically reduced while the degree of CO after burning is relatively low. When the cooling water is injected at the side and the center of the plume, CO after burning is highly increased and NO generation is also dramatically reduced.

Effects of Flight Conditions on IR Signature from Aircraft Exhaust Plume (비행조건에 따른 항공기 배기플룸의 IR 신호 특성)

  • Go, Gun-Yung;Kim, Man-Young;Baek, Seung-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.282-289
    • /
    • 2012
  • The IR Signature and radiative base heating from an aircraft plume have been important factors for aircraft survivability in modern battle fields. In order to enhance the aircraft survivability and reduce the base heating, infrared signatures emitted from an aircraft exhaust plume should be determined. In this work, therefore, IR signatures and radiative base heating characteristics are examined in the plume exhausted from the aircraft with operating at altitude of 5km in M=0.9 and 1.6, respectively. As a result, it is found that the particular wavelength IR signature has high spectral characteristics because of $H_2O$ and $CO_2$ gases in the plume, and the radiative heat flux coming into the base plane increases with higher Mach number and shorter distance.

  • PDF

Numerical and Experimental Study on Infrared Signature of Solid Rocket Motor (고체로켓모터의 적외선 신호에 관한 수치적·실험적 연구)

  • Kim, Sangmin;Kim, Mintaek;Song, Soonho;Baek, Gookhyun;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.62-69
    • /
    • 2014
  • Infrared signature of rocket plume plays an important role for detection, recognition, tracking and minimzing for low observability. Infrared signatures of rocket plume with reduced smoke propellant and smokeless propellant are measured. In order to estimate the infrared signature of rocket plume, CFD analysis for flow structure of plume is performed, and layered integration method for estimating of infrared signature is used. Numerical and experimental results were in good agreement. Both propellants had similar infrared signature. Strong peak at $4.3{\mu}m$ region in the experimental results is appeared due to experimental error arising from the calibration procedure.

KSLV-I Plume Analysis Part III for the launch pad flame deflector performance (발사대 화염유도로 해석을 위한 KSLV-I 플룸 해석 3)

  • Hwang, Do-Keun;Nam, Jung-Won;Kim, Seong-Lyong;Kang, Sun-Il;Kim, Dae-Rae;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.375-378
    • /
    • 2010
  • Hot and high speed plume exhausted during KSLV-I flight test is cooled down by an amount of water ejected from 'gas deflector cooling system' of launch complex to reduce the effects on the launch vehicle and launch complex. In this study, simplified axisymmetric computational calculation with 2-phase is carried out to analysis the water injection effects on flow field.

  • PDF