• Title/Summary/Keyword: 플로팅 링 저널 베어링

Search Result 2, Processing Time 0.015 seconds

Static Properties of Floating Ring Journal Bearings (플로팅 링 저널 베어링 정특성의 실험적 고찰)

  • Song, Jin-Dae;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1150-1153
    • /
    • 2006
  • Many commercial high speed and lightly loaded rotating machineries incorporate floating ring bearings (FRBs) owing to their low cost and reduced power losses. Many researchers have developed various analytical models to predict the performance and the stability of those rotor-bearing systems with FRBs. However, most of the models failed to predict stability of the rotor-bearing systems with FRBs. FRBs comprise two fluid films in series and the ratio of floating ring speed to journal speed reflects the equilibrium state of the two fluid films. Therefore the speed ratio is one of the main concerns in the analysis of FRBs. This paper provides the experimental results of the speed ratio which enables one to verify of the analysis model for FRBs.

  • PDF

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.