• Title/Summary/Keyword: 플렉스자동차

Search Result 2, Processing Time 0.016 seconds

A Study of Fuel Pump Durability on the Bio-ethanol for FFV(Flexible Fuel Vehicle) System (바이오에탄올 연료에 대한 FFV(Flexible Fuel Vehicle)용 연료펌프모터의 내구성에 관한 연구)

  • Kim, Chang-Soo;Kwak, Dong-Ho;Jung, Byung-Jun;Kim, Jong-Myung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.107-112
    • /
    • 2011
  • FFV(Flexible Fuel Vehicle) is the vehicle that can be used liberally from gasoline to E100(Ethanol 100%) for fuel. Recently, interest in the bio-fuel is increased by the environmental factors like exhaustion of the fossil fuel and ruduction of greenhouse gases. For the reason, adopting of FFV is activated in the world including North and South America. In general, bio-ethanol has highly corrosive substance in compare with gasoline. In the part of fuel system, corrosion can make a safety problem in case of fuel leakage and engine starting problem. So the fuel system of FFV have to be made of high corrosion-resistant materials. This study examined the effect of bio-ethanol on the durability properties according to component materials in FFV fuel pump motor and regulator using the High Temperature Fuel Circulation Test.

A Study on Development Process of Evaporating Diesel Spray (증발디젤분무의 발달 과정에 관한 연구)

  • Yeom, Jeong-Kuk;Park, Jong-Sang;Chung, Sung-Sik;Ha, Jong-Yul;Kim, Si-Pom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.141-146
    • /
    • 2007
  • In this study, the effects of change in ambient gas viscosity on spray structure have been investigated in the high temperature and pressure field. To analyze the structure of evaporative diesel spray is important in speculation of mixture formation process. Emissions of diesel engines can be reduced by the control of the mixture formation process. Therefore, this study examines the evaporating spray structure in the constant volume chamber. The viscosity of ambient gas was selected as the experimental parameter, is changed from 21.7 mPa s to 32.1 mPa s by changing in ambient gas temperature. In order to obtain images of the liquid and vapor-phase of injected spray, exciplex fluorescence method was used in this study. The liquid and vapor-phase images were taken with 35mm still camera and CCD camera, respectively. Consequentially, it could be confirmed that the distribution of vapor concentration is more uniform in the case of the ambient gas with high viscosity than in that of the ambient gas with low viscosity.