• Title/Summary/Keyword: 플러딩

Search Result 193, Processing Time 0.015 seconds

Design and Evaluation of a Fuzzy Logic based Multi-hop Broadcast Algorithm for IoT Applications (IoT 응용을 위한 퍼지 논리 기반 멀티홉 방송 알고리즘의 설계 및 평가)

  • Bae, Ihn-han;Kim, Chil-hwa;Noh, Heung-tae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.17-23
    • /
    • 2016
  • In the future network such as Internet of Things (IoT), the number of computing devices are expected to grow exponentially, and each of the things communicates with the others and acquires information by itself. Due to the growing interest in IoT applications, the broadcasting in Opportunistic ad-hoc networks such as Machine-to-Machine (M2M) is very important transmission strategy which allows fast data dissemination. In distributed networks for IoT, the energy efficiency of the nodes is a key factor in the network performance. In this paper, we propose a fuzzy logic based probabilistic multi-hop broadcast (FPMCAST) algorithm which statistically disseminates data accordingly to the remaining energy rate, the replication density rate of sending node, and the distance rate between sending and receiving nodes. In proposed FPMCAST, the inference engine is based the fuzzy rule base which is consists of 27 if-then rules. It maps input and output parameters to membership functions of input and output. The output of fuzzy system defines the fuzzy sets for rebroadcasting probability, and defuzzification is used to extract a numeric result from the fuzzy set. Here Center of Gravity (COG) method is used to defuzzify the fuzzy set. Then, the performance of FPMCAST is evaluated through a simulation study. From the simulation, we demonstrate that the proposed FPMCAST algorithm significantly outperforms flooding and gossiping algorithms. Specially, the FPMCAST algorithm has longer network lifetime because the residual energy of each node consumes evenly.

Clustering based Routing Algorithm for Efficient Emergency Messages Transmission in VANET (차량 통신 네트워크에서 효율적인 긴급 메시지 전파를 위한 클러스터링 기반의 라우팅 알고리즘)

  • Kim, Jun-Su;Ryu, Min-Woo;Cha, Si-Ho;Lee, Jong-Eon;Cho, Kuk-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3672-3679
    • /
    • 2012
  • Vehicle Ad hoc Network (VANET) is next-generation network technology to provide various services using V2V (Vehicle-to-Vehicle) and V2I (Vehicle-to-Infrastructure). In VANET, many researchers proposed various studies for the safety of drivers. In particular, using the emergency message to increase the efficiency of traffic safety have been actively studied. In order to efficiently transmit to moving vehicle, to send a quick message to as many nodes is very important via broadcasting belong to communication range of vehicle nodes. However, existing studies have suggested a message for transmission to the communication node through indiscriminate broadcasting and broadcast storm problems, thereby decreasing the overall performance has caused the problem. In addition, theses problems has decreasing performance of overall network in various form of road and high density of vehicle node as urban area. Therefore, this paper proposed Clustering based Routing Algorithm (CBRA) to efficiently transmit emergency message in high density of vehicle as urban area. The CBRA managed moving vehicle via clustering when vehicle transmit emergency messages. In addition, we resolve linkage problem between vehicles according to various form of road. The CBRA resolve link brokage problem according to various form of road as urban using clustering. In addition, we resolve broadcasting storm problem and improving efficacy using selection flooding method. simulation results using ns-2 revealed that the proposed CBRA performs much better than the existing routing protocols.

Development on Metallic Nanoparticles-enhanced Ultrasensitive Sensors for Alkaline Fuel Concentrations (금속 나노입자 도입형의 초고감도 센서 개발 및 알칼라인 연료 측정에 적용 연구)

  • Nde, Dieudonne Tanue;Lee, Ji Won;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.126-132
    • /
    • 2022
  • Alkaline fuel cells using liquid fuels such as hydrazine and ammonia are gaining great attention as a clean and renewable energy solution possibly owing to advantages such as excellent energy density, simple structure, compact size in fuel container, and ease of storage and transportation. However, common shortcomings including cathode flooding, fuel crossover, side yield reactions, and fuel security and toxicity are still challenging issues. Real time monitoring of fuel concentrations integrated into a fuel cell device can help improving fuel cell performance via predicting any loss of fuels used at a cathode for efficient energy production. There have been extensive research efforts made on developing real-time sensing platforms for hydrazine and ammonia. Among these, recent advancements in electrochemical sensors offering high sensitivity and selectivity, easy fabrication, and fast monitoring capability for analysis of hydrazine and ammonia concentrations will be introduced. In particular, research trend on the integration of metallic and metal oxide nanoparticles and also their hybrids with carbon-based nanomaterials into electrochemical sensing platforms for improvement in sensitivity and selectivity will be highlighted.