• 제목/요약/키워드: 플랫폼 이용

검색결과 3,134건 처리시간 0.032초

연안항로 해상교통안전을 위한 해무관측망 운영방안에 관한 연구 (Operation Measures of Sea Fog Observation Network for Inshore Route Marine Traffic Safety)

  • 이주영;김국진;손영태
    • 해양환경안전학회지
    • /
    • 제29권2호
    • /
    • pp.188-196
    • /
    • 2023
  • 기상불량으로 인해 발생하고 있는 해양사고 중 해무 발생에 따른 시계제한은 선박의 좌초, 선저 파손 등의 사고를 유발하는 것과 동시에 사고에 따른 인명피해를 동시에 수반하고 있으며 이는 매년 지속적으로 발생하고 있다. 또한 해상에서의 저시정은 지역간 국소적으로 차이가 존재하는 경우에도 일괄적으로 여객선에 대한 운항 지연 및 통제 조치를 하고 있어 섬주민들의 교통수단 이용에 상당한 불편을 초래하는 등의 사회적 문제로 대두되고 있다. 더욱이 이와 같은 조치는 지역적 편차나 사람마다 관측의 판단 기준이 상이하여 이를 객관적으로 정량화하지 못하고 있어 더욱 문제가 심화되고 있는 실정이다. 현재 각 항만의 VTS에서는 시정거리가 1km 미만인 경우 선박의 운항을 통제하고 있으며, 이 경우 저시정에 따른 해무 가시거리를 시정계 혹은 육안에 의한 목측(目測)에 의존하고 있을 정도로 객관적인 데이터 수집을 통한 평가에 있어서는 한계가 있다. 정부에서는 이와 같은 해양교통안전 저해요소를 해결하기 위한 일환으로 해무 탐지 및 예측을 위한 해양기상신호표지 및 해상안개관측망을 구축하여 운용하고 있으나, 국지적으로 발생하는 해무를 관측하기 위한 시스템은 매우 부족한 현실적 어려움에 놓여있다. 이에 따라 본 논문에서는 해상에서의 저시정으로 인해 발생하고 있는 여러 사회적 문제를 해결하기 위한 국내·외 정책동향에 대해 살펴보고, 이와 관련한 일반국민 및 현장 이해관계자의 인식 정도를 조사·분석하여 해무에 따른 해상교통안전을 확보하기 위한 정부지원(해무 탐지 및 예측 기술을 기반으로 한 해상교통운영 체계 개발 등)의 필요성에 대한 기초자료를 제공하고자 한다. 또한 이는 궁극적으로 해무로 인해 발생할 수 있는 해상안전 위험요소를 사전에 차단함으로써 보다 안정된 해상교통운영체계를 마련하는데 그 목적을 두고 있다.

기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정 (Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images)

  • 배세정;손보경;성태준;이연수;임정호;강유진
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1009-1029
    • /
    • 2023
  • 도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.

신(新)무역물류환경의 특성을 적용한 수출대금 결제유형 선택연구 (A Study on the Choice of Export Payment Types by Applying the Characteristics of the New Trade & Logistics Environment)

  • 김창봉;이동준
    • 무역학회지
    • /
    • 제48권4호
    • /
    • pp.303-320
    • /
    • 2023
  • 최근 수출입기업은 무역대금 결제과정과 방식을 선택하면서 신용장보다 T/T 송금과 Surrender B/L을 더 유용하게 이용하고 있으며 신(新)무역물류환경의 특성이 4IR 시대에 들어 강력하게 작용하고 있어 서류에 기반한 무역거래가 선하증권의 전자화나 스마트 계약의 발전으로 인해 새로운 국면을 맞이하고 있다. 본 연구의 목적은 수출기업이 협상 요인에 따라 수출대금 결제유형 선택이 달라지는지를 검증하고 신(新)무역물류환경의 특성을 적용하여 논하는 것이다. 분석을 위한 데이터는 설문을 통해 수집하였으며, 업체 직접방문, e-mail, fax, 온라인 설문, 등기우편회수 등으로 회수하였다. 설문배포기간은 2023년 2월 1일~2023년 4월 30일까지이며 2,000부가 배포되어 447부가 회수되고(회수율 22.4%), 본 연구의 목적에 부적합한 111부를 제외한 최종 336부의 데이터가 사용되었다. 아래는 연구의 결과를 나타낸다. 첫째, 협상 요인 중 수출기업이 가지는 제품 차별성은 수출대금 결제유형 선택에 유의한 영향을 미치지 못하였다. 둘째, 협상 요인 중 수출기업이 인식하는 수입기업 구매우위가 높아질수록 사후송금방식이 더 큰 가능성으로 선택되었다. 본 연구는 이와 같은 분석 결과에 더하여 향후 수출기업이 수출대금 결제유형을 선택하면서 신(新)무역물류환경의 특성이 적용된 블록체인기술기반 선하증권, 무역금융플랫폼 등과 같은 새로운 방식의 결제를 고려해야 할 필요성을 제언하였다. 따라서 수출기업은 예컨대 선하증권 위기현상에 대응하는 무역서류의 디지털화 시도 등에 지속적인 관심을 보여야 할 것이고, 후속 연구에서는 국내의 부족한 사회적 인식을 해외선진연구를 통해 제고할 필요가 있을 것으로 기대한다.

한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구 (Research on Generative AI for Korean Multi-Modal Montage App)

  • 임정현;차경애;고재필;홍원기
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2024
  • 멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.