• Title/Summary/Keyword: 플래핑 날개

Search Result 21, Processing Time 0.024 seconds

Optimization Design of Hydrofoil Shape and Flapping Motion in AUV(Autonomous Underwater Vehicle) (플래핑 운동을 적용한 자율무인잠수정(AUV)의 날개형상 및 운동 최적설계)

  • Kim, Il-Hwan;Choi, Jung-Sun;Park, Kyung-Hyun;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2013
  • The motion of living organisms such as birds, fishes, and insects, has been analyzed for the purpose of the design of MAV(Micro Air Vehicle) and NAV(Nano Air Vehicle). In this research, natural motion was considered to be applied to the determination of the geometry and motion of AUV(Autonomous Underwater Vehicle). The flapping motion of a number of hydrofoil shapes in AUV was studied, and at the same time, the optimization of the hydrofoil shape and flapping motion was executed that allow the highest thrust and efficiency. The harmonic motion of plunging and pitching of NACA 4 digit series models, was used for the numerical analysis. The meta model was made by using the kriging method in Optimization method and the experimental points of 49 were extracted for the OA(Orthogonal array) in DOE(Design of experiments). Parametric study using this experimental points was conducted and the results were applied to MGA(Micro Genetic Algorithm). The flow simulation model was validated to be an appropriate tool by comparing with experimental data and the optimized shape and motion of AUV was turned out to produce highest thrust and efficiency.

Development of a Radio Controlled Ornithopter 'Songgolmae' (무선조종 날개짓 비행체 '송골매' 개발)

  • Chang, Jo-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1993-1998
    • /
    • 2004
  • The present study was carried out to develop highly efficient RC ornithopter 'Songgolmae' powered by motor and battery. Designed electric ornithopter weighs 277 grams and has 3 channels radio control. 1t runs on an electric motor by a lithium polymer battery and has a gear ratio of about $75{\sim}95$ to 1 to flap its 88 cm wingspan. The aerodynamic performance of the ornithopter, applied to a flapping motion only, was validated by flight tests. Flight times have exceeded 23 minutes until the battery was used up. The flight test results indicate that the ornithopter developed here has sufficient thrust to propel itself in a forward flight. From the economical point of view and the handling of the RC ornithopter, it can be said that the developed robot ornithopter is an effective RC ornithopter. This radio controlled ornithopter flies its way high into the sky just like a real bird flies.

  • PDF

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

Aerodynamic Study on Phase Difference of Fore-and Hind-wing of a Dragonfly-type Model (잠자리 유형 모델의 앞,뒤 날개 위상차에 대한 공력연구)

  • 김송학;장조원;송병흠
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.18-25
    • /
    • 2006
  • Unsteady aerodynamic force measurements were carried out in order to investigate the effects of phase difference of a dragonfly-type model with two pairs of wing. A load-cell was employed to measure the aerodynamic force generated by a plunging motion of the dragonfly-type model. The dragonfly-type model has a dynamic similarity with real one, and incidence angles of fore- and hind-wing are 0° and 10°, respectively. Other experimental conditions are as follows: The freestream velocity was 1.6 m/sec and corresponding chord Reynolds number was 2.88×103, and phase differences of fore- and hind-wing were 0°, 90°, 180° and 270°. The variation of aerodynamic coefficients during one cycle of the wing motion is presented. Results show that the lift is generated during the downstroke motion and the drag generated during the hind-wing‘s downstroke motion with the lift generation.

Computational Study of Unsteady Three Dimensional Wing in Pitching Motion Utilizing Linear Vortex Panel Method (VORTEX 패널법을 이용한 비정상 3차원 날개의 피칭 운동에 관한 연구)

  • Jeong,Bong-Gu;Cho,Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • In this study, steady/unsteady aerodynamic characteristic for three dimensional symmetric wing was investigated numerically using Vortex Panel Method. This program utilized linearly varying vortices in x and y directions distributed on the wing surface and was applied to the incompressible potential. flow around a three dimensional wing Separation and deformation of the wake are not considered. The comparison between NACA Airfoil Data and the computed results showed excellent agreement. πus method was applied to unsteady wings undergoing both sudden pitch-up and constant rate pitching motion. In the unsteady flow analysis, a formation and a time-dependent locations of Starting Vortices are considered and the effect of Starting Vortices on aerodynamic characteristic of the wing was calculated. The present method can be extended to apply for more complicated cases such as pitching, flapping and rotating wing analysis.

Unsteady Lift Measurements of the Dragonfly-type Wing (잠자리 유형 날개의 비정상 양력 측정)

  • Kim, Song-Hak;Jang, Jo-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • Unsteady lift measurements were carried out in order to investigate the effects of phase difference and reduced frequency of a dragonfly-type model with two pairs of wing. A load-cell was employed to measure the lift generated by a plunging motion of the dragonfly-type model with the incidence angles of 0$^{circ}$. Experimental conditions are as follows: phase differences between fore- and hind-wings are 0$^{circ}$, 90$^{circ}$, 180$^{circ}$, and 270$^{circ}$, and reduced frequencies are 0.075, 0.15 and 0.225, respectively. The freestream velocity was 143 m/sec and corresponding chord Reynolds number was $3.4{\times}10^3$. The variation of phase-averaged lift coefficients during one cycle of the wing motion is presented. Results show that the total value of the positive lift coefficient during one cycle of the wing motion is the largest at the phase difference of 90$^{circ}$, and that the maximum lift coefficient and lift coefficient per unit of time increases with reduced frequency.

  • PDF

Visualization Study of Dragonfly Type Wing : Reduced Frequency (잠자리 유형 날개의 가시화 연구 : 무차원 진동수)

  • Kim Song Hak;Chang Jo Won
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.14-17
    • /
    • 2004
  • A purpose of this visual experiment is to investigate the effect of reduced frequency qualitatively by examining wake pattern change for insect flying motion. Insect is composed of two pair wing with forewing and hindwing, flying motion of insect is performed pitching and plunging so it makes a separation over the wings. The separation affects at the wake pattern and changed wake pattern has an influence on lift, drag and propulsion. This experiment is conducted by using a smoke wire technique and a camera is fixed at hindwing to take a photograph of wake. An electronic device is mounted below test section to find exact the mean positional angle of wing. The reduced frequency in experiment is 0.15, 0.3 and 0.45. We obtained the result which that reduced frequency is closely related to wake pattern that determines flight efficiency.

  • PDF

Flow Visualization for a Dragonfly Type Wing (잠자리 유형 날개에 대한 흐름 가시화)

  • Kim, Song-Hwak;Kim, Hyun-Seok;Chang, Jo-Won;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1586-1591
    • /
    • 2004
  • Flow visualization experiments have been performed to investigate the effects of phase lag, reduced frequency qualitatively by examining wake pattern on a dragonfly type wing. The model was built with a scaled-up, flapping wings, composed of paired wings with fore- and hindwing in tandem, that mimicked the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique, and an electronic device was mounted to find the exact positional angle of wing below the tandem wings, which amplitude is ranged from $-16.5^{\circ}$ to $+22.8^{\circ}$. Phase lag applied on the wings is $0^{\circ}$, $90^{\circ}$, $180^{\circ}$ and $270^{\circ}$. The reduced frequency is 0.15, 0.3 and 0.45 to investigate the effect of reduced frequency. It is inferred through observed wake pattern that the phase lag clearly plays an important role in the wake structures and in the flight efficiency as changing the interaction of wings. The reduced frequency also is closely related to wake pattern and determines flight efficiency.

  • PDF

Unsteady Thin Airfoil Theory of a Biomorphing Airfoil (생체형상가변 에어포일에 대한 비정상 박익이론)

  • Han, Cheol-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • Birds and insect in nature morph their mean camberline shapes to obtain both lift and thrust simultaneously. Previous unsteady thin airfoil theories were derived mainly for a rigid flapping airfoil. An extended unsteady thin airfoil theory for a deformable airfoil is required to analyze the unsteady two-dimensional aerodynamic characteristics of a biomorphing wing. Theodorsen's approach is extended to calculate the unsteady aerodynamic characteristics of a biomorphing airfoil. The mean camberline of the airfoil is represented as a polynomial. The unsteady aerodynamic characteristics of the morphing airfoil are represented as noncirculatory and circulatory terms. Present theory can be applied to the unsteady aerodynamic analysis of a flapping biomorphing airfoil and the aeroelastic analysis of a morphing wing.

NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.