• Title/Summary/Keyword: 플라즈마 진단

Search Result 221, Processing Time 0.033 seconds

플라즈마 전기적 진단 기술

  • Yu, Sin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.91.1-91.1
    • /
    • 2016
  • 플라즈마 전기적인 진단 방법이라 함은 플라즈마에 전기장을 인가하고 이로 인해 도출되는 전류와 그 위상차를 구하여 플라즈마의 임피던스를 얻는 방법을 통칭한다. 이러한 방법은 임피던스라는 raw data에서 출발하지만 플라즈마와 전기장의 상호작용에 따라 다양한 플라즈마 진단 모델이 적용될 수 있으며, 이러한 모델을 통해 다양한 플라즈마 변수 (플라즈마 밀도, 온도, 전위 등등)들을 도출할 수 있는 것이 특징이라고 할 수 있다. 본 발표에서는 진단에 사용되는 주파수와 진단기의 형상에 따라 달라지는 외부 전기장와 플라즈마의 전기적인 상호작용을 살펴보고, 어떻게 플라즈마 전기적 진단기술이 성립되는지를 다양한 전기적 진단 기술을 소개하면서 설명하고자 한다.

  • PDF

플라즈마 분광 진단 기술

  • Mun, Se-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.94.2-94.2
    • /
    • 2016
  • 플라즈마 분광진단 기술은 기존 프로브와 달리 플라즈마에 섭동을 일으키지 않고, 전자온도, 밀도와 같은 플라즈마의 물리적 특성 진단과 함께 라디컬의 밀도와 같은 플라즈마의 화학적 특성을 진단할 수 있는 기술로 각광을 받고 있다. 본 발표에서는 레이저진단의 고급 진단을 제외한 플라즈마 변수 측정을 위한 플라즈마 방출 스펙트럼을 이용하는 방출분광진단과 흡수 스펙트럼을 이용한 흡수분광 진단에 대한 소개와 함께, 이를 이용한 플라즈마의 전자여기온도, 전자밀도, 전자회전온도, 기체온도 및 중성종의 절대밀도 온도 측정에 대한 기술과 실례를 소개한다.

  • PDF

공정 플라즈마 진단을 위한 고조화파 분석법 및 진단 결과

  • Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.29-29
    • /
    • 2011
  • 플라즈마 진단법은 플라즈마를 분석 및 이해하는데 매우 중요하다. 최근 플라즈마 쉬스의 비선형성을 이용한 고조화파 분석법이 개발되었다. 플라즈마 쉬스에 정현 전압을 인가하면, 쉬스의 비선형성 때문에 고조화 전류들이 발생하게 되는데, 이 고조파 전류들을 분석하면 플라즈마밀도와 전자 온도를 측정할 수 있다. 이 방법은 실시간 또는 고속으로 플라즈마 측정이 가능하고, 부도체 탐침을 사용할 수 있기 때문에, 식각 또는 증착 플라즈마에서는 측정이 가능한 장점이 있다. 본 발표에서는 진단법의 원리와 공정 플라즈마 장비에서 진단 결과들을 소개하고자 한다.

  • PDF

마이크로웨이브 기반 플라즈마 진단 기술

  • Yu, Gwang-Ho;Kim, Dae-Ung;Gwon, Ji-Hye;Yu, Sin-Jae;Kim, Jeong-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.91.2-91.2
    • /
    • 2016
  • 반도체 및 디스플레이 등과 같은 전자산업분야에 플라즈마를 이용한 생산공정이 폭넓게 활용됨에 따라서 공정 결과를 예측하고 조절할 수 있는 플라즈마 변수 측정 및 진단기술의 중요성은 더욱 증가되고 있다. 플라즈마 진단을 위해 가장 많이 사용되고 있는 량뮤어 탐침(Langmuir Probe)은 수십 볼트(V)의 전압을 탐침에 인가하여 들어오는 전류(I)를 측정한 I-V curve의 해석을 바탕으로 플라즈마 변수들(전자밀도, 전자온도, 플라즈마 전위, ${\cdots}$)을 측정하는 방법으로 탐침에 인가한 전압으로 인하여 플라즈마가 영향을 받고 이로인하여 공정 결과에 변화를 줄 수 있다. 또한, 증착공정과 같이 공정과정 중에 탐침의 증착으로 인해 탐침으로 들어와야하는 전자 및 이온의 양이 감소하여 측정에 오차가 발생할 수 있어 공정 플라즈마 진단에 적합하지 않다. 따라서 공정 플라즈마의 정확한 측정을 위해서는 플라즈마에 대한 영향을 최소화하고 증착으로 인하여 탐침이 오염 되는 환경에서도 플라즈마 변수를 정확히 측정할 수 있는 진단 장치가 요구된다. 마이크로웨이브를 이용한 진단장치들은 1 mW 이하의 매우 작은 파워를 사용하기 때문에 플라즈마에 영향을 최소화하여 보다 정확한 플라즈마 진단이 가능하다. 또, 유전체 투과특성이 있는 마이크로웨이브를 이용하기 때문에 탐침이 유전체로 증착되었다 하더라도 측정에는 문제가 없어 공정 플라즈마 진단에 용이하다. 이런 장점들로 인하여 헤어핀 탐침(Hairpin probe), 컷오프 탐침(cutoff probe), 임피던스 탐침(Impedance probe) 등과 같이 마이크로웨이브를 이용하여 다양한 형태의 진단 장치들이 개발되었다. 본 발표에서는 마이크로웨이브를 이용한 다양한 형태의 진단 장치들을 소개하고 각각이 가지는 장단점을 정리하여 각 진단장치들이 측정이 적합한 영역을 소개할 예정이다.

  • PDF

플라즈마 방출광 진단을 이용한 플라즈마 진단 및 제어에 관한 연구

  • Choe, Jin-U;Park, Hye-Jin;Lee, Ye-Seul;Jo, Tae-Hun;Hwang, Sang-Hyeok;Kim, U-Jae;Yun, Myeong-Su;Cha, Seong-Deok;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.215.2-215.2
    • /
    • 2016
  • 플라즈마는 현대 산업에서 다양한 고부가가치 산업 분야에 걸쳐 이용되고 있다. 이러한 플라즈마를 정밀하게 진단하고 제어하는 기술이 공정의 수율을 증대하고 생산성을 높이는데 크게 기여함은 자명하다. 플라즈마를 진단하는 방법은 크게 광학적 진단 방법과, 전기적 진단 방법으로 나눌 수 있는데 광학적 진단 방법은 방전시 발생하는 방출광을 통해 플라즈마의 현재 상태를 예측하는 방법이고, 전기적 진단 방법은 플라즈마 내로 직접 탐침을 접촉하여 전기적 물리량을 측정하는 방법이다. 각각은 정성적, 정량적 진단을 하는 데에 장점이 있다. 공정 모니터링은 주로 광학적 진단 방법에 의해 이루어지는데 전기적 진단 방법은 플라즈마와 직접 접촉하기 때문에 플라즈마에 대한 간섭현상이 발생하므로 부적합하다. 해당 실험에서는 유도 결합형 플라즈마 발생 용기에 아르곤, 산소 혼합 유체를 유입하여 방전하며 광학적 진단 방법을 통해 플라즈마를 관측하며 실험을 진행하였다. 측정 장치는 3채널 광학 진단이 가능한 시스템을 구성하여 공정중 발생하는 방출광의 특정 피크 변화를 공정 변수 변화로 인지하여 질량 유량 제어기를 조작, 피크를 초기상태로 되돌리는 공정 제어가 가능하도록 시스템을 구성하였다. 이를 통해 플라즈마를 이용한 공정 중 공정 변화에 자동으로 대응하는 공정제어 시스템을 시험 하였다.

  • PDF

이중주파수 부유형 탐침법을 이용한 플라즈마 진단 연구

  • Park, Il-Seo;Bang, Jin-Yeong;Kim, Yeong-Cheol;Kim, Yu-Sin;Kim, Dong-Hwan;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.525-525
    • /
    • 2012
  • 플라즈마 밀도와 전자온도는 반도체 및 디스플레이 공정결과에 결정적인 역할을 하므로 그에 대한 진단법 연구는 필수적이다. 하지만 대부분의 연구는 공정플라즈마와 같이 프로브 팁이 증착된 환경에서는 진단이 힘든 실정이다. 이러한 한계를 극복하기 위해서 부유전위 근처에서 고조파 진단법(floating harmonic method)에 대한 연구가 제시되었다[1]. 저밀도 플라즈마에서는 제 2 고조파의 측정이 어렵기 때문에 전자온도를 정확히 측정하기 힘들 수가 있다. 따라서 이에 대안으로 본 논문에서는 부유 고조파 진단법을 기반으로 하여 진폭과 주파수를 다르게 한 두개의 소신호 정현파 전압신호를 동시에 인가하여 플라즈마 변수를 진단하는 방법을 개발하였다. 본 방법을 이용하여 유도결합 아르곤 플라즈마에서 RF전력과 압력변화에 따라 플라즈마 변수진단을 진행하였고, 기존의 고조파 진단법의 결과와 일치하는 경향을 보이는 것을 확인하였다. 이 방법은 측정된 전류의 고조파 성분을 이용하지 않고 기본주파수를 가지는 전류의 크기 비율을 사용하여 전자온도 값을 구하기 때문에 저밀도 플라즈마에서 정밀한 진단이 가능할 것으로 예상된다.

  • PDF

초대면적 플라즈마의 공간균일도 평가를 위한 방출광 진단계 개발

  • Park, Sang-Hu;Kim, Gi-Jung;Choe, Won-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.256.1-256.1
    • /
    • 2014
  • 21세기 정보화 시대의 도래와 함께 반도체 및 디스플레이 분야는 고부가가치산업으로 급격히 성장하였고, 현재까지도 미래의 지속적인 시장 창출을 위하여 기술개발과 투자로 초미세화, 고효율, 대면적화에 대한 원천기술 확보가 중요시되고 있다. 반도체 및 디스플레이의 대면적화가 진행됨에 따라 플라즈마 공정장비의 대면적화도 활발히 기술개발이 진행되고 있으며, 대면적화에 있어 플라즈마의 공간균일도는 생산수율 및 공정균일화를 위해 기본적으로 평가되어야 하는 중요한 지표가 되었다. 하지만 종래의 진단법들은 대면적 플라즈마 진단에 매우 제한적이기 때문에 본 연구에서는 대면적 플라즈마의 공간균일도 평가를 위해 플라즈마의 방출광 측정을 기초로 하는 진단계를 개발하였다. 플라즈마 방출광을 이용한 진단은 플라즈마에 섭동을 주지 않고 전자온도의 변화 및 공간균일도를 평가할 수 있다. 이 진단법은 두 마주보는 한쪽 면이 평평한 볼록렌즈(plano-convex lens)로 이루어진 수광시스템과 역변환 알고리즘을 통해 선 적분된 방출광으로부터 플라즈마 방출광의 국지적 정보를 측정하는 것이다. 플라즈마와 같이 크기가 큰 광원의 경우 렌즈 광학계에서 필연적으로 수반되는 선적분된(chord-integrated) 방출광을 제거하기 위해 구조에 따른 시스템 함수를 이용한 푸리에 변환 알고리즘을 개발하였고, 이를 통해 렌즈 초점거리의 정확한 방출광 세기만 재구성하였다. 이러한 재구성 방법을 이용하여 렌즈의 거리를 움직이며 대면적 플라즈마의 방출광 분포측정을 수행하였고, 이에 대한 결과를 발표하고자 한다.

  • PDF

Actinometry에 의한 CF4플라즈마에서의 F라디칼의 공간분포

  • Lee, U-Hyeon;Jeong, Jae-Cheol;Kim, Dong-Hyeon;Kim, Hyeok;Hwang, Gi-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.217-217
    • /
    • 2011
  • 플라즈마를 이용하는 식각 및 증착등의 반도체공정에 있어서 최근에는 기판의 크기가 점차 증가하는 추세에 있다. 이러한 대면적 플라즈마 발생장치 내에서 플라즈마 밀도와 라디칼 농도의 공간적인 특성을 이해하는 것에 대한 중요성이 더해지고 있다. 이를 위해 Langmuir probe와 같은 전기적 접근법에 의한 진단방법이나 광학적 접근법에 의한 진단방법에 대한 연구가 이루어 졌다. 전기적 접근법에 의한 플라즈마의 진단방법은 원리가 간단하고 정확도가 높다는 장점이 있지만 진단 장치에 의한 플라즈마의 간섭이 크고 식각가스의 경우 진단이 어렵다는 단점이 있다. 그에 비해 광학적 진단방법은 플라즈마에 간섭이 많지 않은 방법으로 알려져 있고 레이저 형광법(LIF), 원적외선 레이저 흡수 분광법(IR laser Absorption Spectroscopy), 광량측정법(Actinometry)등이 있다. 이 중 레이저 형광법, 원적외선 레이저 흡수 분광법의 경우, 진단장치가 매우 복잡하고 가격이 비싸다는 단점을 가지고 있다. 반면 광량측정법의 경우 다른 광학적 접근법에 의한 진단방법에 비해 원리와 실험장치가 간단하고 공간적인 라디칼 분포의 진단이 쉽다는 점에서 장점을 가지고 있다. Actinometry는 Ar과 같은 불활성 기체를 작은 비율을 넣어서 여기 된 불활성 기체의 파장세기와 여기 된 측정 라디칼의 파장세기의 비교를 통해 상대밀도를 측정하는 방법이다. 이 측정 방법에 Abel's inversion equation을 적용함으로 해서 대면적 M-ICP(Magnetized - Induced Coupled Plasma)에서 식각가스인 $CF_4$플라즈마에서 F 라디칼 농도의 공간적인 분포를 측정하고 분석하였다. 또한 플라즈마의 압력, 소스 전력 값과 기판 전력 값등의 조건의 변화에 따라 F 라디칼 농도의 분포가 어떻게 달라지는지에 대해 측정 분석하여 다루었다.

  • PDF

플라즈마 공간분포 측정을 위한 디지털카메라를 이용한 토모그래피 진단법 개발 및 부유탐침 진단 결과와의 비교 분석

  • Jang, Si-Won;Lee, Seung-Heon;Choe, Won-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.100-100
    • /
    • 2010
  • 토모그래피는 플라즈마 물리학뿐만 아니라 의료영상이나 천문학 등의 분야에서 오랫동안 이용되어 온 기법으로 직접 들여다 볼 수 없는 단면을 선적분된 데이터를 이용하여 국지적인 데이터를 재구성해내는 영상진단 방법이다. 플라즈마 물리학의 경우 공간적으로 검출기 배열을 균일하게 배치할 수 없으므로 토모그래피 기법에 균일화는 필수적이다. 이를 위해 본 연구에서는 Phillips-Tikhonov 균일화 방법을 사용하였다. Phillip-Tikhonov 균일화 방법은 인접한 픽셀 사이의 구배(gradient)를 최소화하는 방향으로 단면영상을 재구성하는 방식으로, 다른 토모그래피 알고리듬에 비해 훨씬 더 정확한 결과를 보여준다. 본 연구에서는 플라즈마의 공간분포 진단을 위하여 토모그래피 진단법과 부유탐침 진단법을 사용하였다. 플라즈마의 선적분된 방출광을 디지털카메라로 측정한 후 Phillips-Tikhonov 토모그래피 방법으로 재구성하여 플라즈마의 국지적인 공간분포를 알아내었다. 결과의 타당성을 확보하기 위해 부유탐침 진단결과와 비교 분석하여, 전자온도가 위치에 따라 일정한 상태에서 부유탐침을 통한 밀도분포와 토모그래피 진단법에 의한 플라즈마 방출광 세기의 공간분포가 거의 일치함을 확인할 수 있었다. 이를 통해 플라즈마의 국지적인 공간분포 진단을 위한 디지털카메라를 이용한 토모그래피 진단법의 타당성을 검증하였다.

  • PDF

펄스플라즈마에서 부유고조화를 이용하여 고시간분해능으로 플라즈마 진단방법

  • Kim, Yu-Sin;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.563-563
    • /
    • 2013
  • 신업플라즈마에서는 라디컬 밀도와 플라즈마 변수를 독립적으로 제어하기 위해어 펄스파워 소스를 사용하고 있다. 펄스플라즈마에서는 플라즈마 상태가 매우 빨리 변한다. 따라서 고시간 분해능으로 플라즈마를 진단하는 방법이 필요하다. 고전적인 단일 랑뮤어 탐침법을 이용하여 펄스 플라즈마를 진단할 경우 수시간 정도의 매우 오랜 시간이 걸리지만 본 연구에서 제안한 방법을 이용하면 수 마이크로 초의 고시간 분해능을 가지면서 수 초내로 측정이 가능하다. 기본 원리는 부유고조화파를 이용하며 고시간 분해능으로 얻기 위해서는 측정된 전류를 인가한 주파수의 주기 단위로 분할하고, 마이크로 시간 단위로 분할된 데이터를 각각 Fourier Transform 하여 전자온도와 밀도를 얻는다. 이 방법을 이용하여 구한 플라즈마 변수 값들은 랑뮤어 방법으로 구한 것과 비교하여 잘 일치하는 결과를 얻을 수 있었다.

  • PDF