• 제목/요약/키워드: 플라즈마 보호막 효과

검색결과 3건 처리시간 0.025초

보호막 내 불순물 확산 방지를 통한 AC PDP 의 방전 효율 개선

  • 정희운;이태호;황기웅
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.487-487
    • /
    • 2012
  • 플라즈마 디스플레이 패널(PDP)은 공정 절차가 간단하고 가격 경쟁력이 매우 뛰어나 일찌감치 대형 평판 디스플레이 시장을 주도해 왔으며 빠른 응답 속도를 기반으로 한 생생한 화질의 구현으로 3D TV 시장에서도 꾸준한 사랑을 받고 있다. 향후 더 큰 화면을 요구하는 PID(Public Information Display) 시장에서도 PDP 는 두각을 나타낼 수 있을 것으로 보인다. 하지만 PDP 는 여전히 LCD, OLED 등의 디스플레이에 비해 발광 효율이 낮고 소비 전력이 높다는 단점을 가지고 있다. 또한 미국 환경청(EPA)과 에너지부(DOE)가 공동으로 마련한 전자 제품의 효율 등급제인 에너지 스타(Energy Star) 제도가 끊임없이 개편되면서 소비 전력에 대한 규제가 점차 강화되고 있기 때문에 발광 효율 및 소비 전력 특성의 개선은 현재 PDP 업계가 해결해야 할 가장 중요한 과제라고 할 수 있다. 발광 효율의 개선과 관련하여 최근에는 PDP의 보호막으로 널리 쓰이고 있는 MgO 보다 2차 전자 방출 계수가 높아 PDP의 구동 전압을 낮추는 동시에 휘도와 발광 효율 특성을 개선시킬 수 있는 신 보호막에 대한 연구가 활발히 이루어지고 있다. MgO를 대체 가능한 신 보호막으로 언급되는 물질은 SrO 혹은 CaO 등이 대표적이다. 하지만 이러한 물질들은 공기 및 수분에 대한 용해도가 높기 때문에 증착된 막이 이후의 공정 과정(합착 및 가열 배기 등)에서 대기 중에 노출 될 경우 심하게 변질될 수 있다. 이러한 문제점을 해결하기 위해서 신 보호막 위에 기존의 MgO 보호막을 얇게 증착하여 공기로부터의 접촉을 차단하거나 펠렛을 제조하는 과정에서 MgO 에 신 보호막 물질을 소량만 첨가하는 등의 방법들이 제안되어 왔으며 그 결과 기존의 PDP 대비 구동 전압을 낮추고 발광 효율을 획기적으로 개선하는데 성공한 결과들이 지속적으로 보고되고 있다. 하지만 신 보호막이 공기 및 수분에 민감한 만큼, 고온의 공정으로 인해 PDP의 하판 유리로부터 상판에 증착된 박막으로 확산되는 불순물에 의해서도 오염되며 이 역시 신 보호막의 특성을 구현하는데 방해 요소로 작용한다. 본 연구에서는 PDP 하판의 불순물이 상판의 박막으로 확산되는 것을 방지하고자 하판 형광체 인쇄전 PECVD 증착법으로 확산 방지막을 1 가량 형성하였다. 이후 SIMS 분석을 통하여 하판 불순물의 확산이 효과적으로 차단됨을 확인하였고 신 보호막의 오염을 최소화하여 결과적으로 PDP의 구동 전압을 낮추고 효율을 획기적으로 개선하는데 기여할 수 있음을 확인하였다.

  • PDF

Pulse Inductively Coupled Plasma를 이용한 Through Silicon Via (TSV) 형성 연구

  • 이승환;임영대;유원종;정오진;김상철;이한춘
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.18-18
    • /
    • 2008
  • 3차원 패키징 System In Package (SIP)구조에서 Chip to Chip 단위 Interconnection 역할을 하는 Through Silicon Via(TSV)를 형성하기 위하여 Pulsating RF bias가 장착된 Inductively Coupled Plasma Etcher 장비를 이용하였다. 이 Pulsating 플라즈마 공정 방법은 주기적인 펄스($50{\sim}500Hz$)와 듀티($20{\sim}99%$) cycle 조절이 가능하며, 플라즈마 에칭특성에 영향을 주는 플라즈마즈마 발생 On/Off타임을 조절할 수 있다. 예를 들면, 플라즈마 발생 Off일 경우에는 이온(SFx+, O+)과 래디컬(SF*, F*, O*)의 농도 및 활성도를 급격하게 줄이는 효과를 얻을 수가 있는데, 이러한 효과는 식각 에칭시, 이온폭격의 손상을 급격하게 줄일 수 있으며, 실리콘 표면과 래디컬의 화학적 반응을 조절하여 에칭 측벽 식각 보호막 (SiOxFy : Silicon- Oxy- Fluoride)을 형성하는데 영향을 미친다. 그리고, TSV 형성에 있어서 큰 문제점으로 지적되고 있는 언더컷과 수평에칭 (Horizontal etching)을 개선하기 위한 방법으로, Black-Siphenomenon을 이번 실험에 적용하였다. 이 Black-Si phenomenon은 Bare Si샘플을 이용하여, 언더컷(Undercut) 및 수평 에칭 (Horizontal etching)이 최소화 되는 공정 조건을 간편하게 평가 할 수 있는 방법으로써, 에칭 조건 및 비율을 최적화하는 데 효율적이었다. 결과적으로, Pulsating RF bias가 장착된 Inductively Coupled Plasma Etcher 장비를 이용한 에칭실험은 펄스 주파수($50{\sim}500Hz$)와 듀티($20{\sim}99%$) cycle 조절이 가능하여, 이온(SFx+, O+)과 래디컬(SF*, F*, O*)의 농도와 활성화를 조절 하는데 효과적이었으며, Through Silicon Via (TSV)를 형성 하는데 있어서 Black-Si phenomenon 적용은 기존의 Continuous 플라즈마 식각 결과보다 향상된 에칭 조건 및 에칭 프로파일 결과를 얻는데 효과적이었다.

  • PDF

고 출력 레이저에 의한 충격파 현상 연구 및 응용 (High Power Laser Driven Shock Compression of Metals and Its Innovative Applications)

  • 이현희;곽민철;최지혜;여재익
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.832-840
    • /
    • 2008
  • Ablation occurs at irradiance beyond $10^9\;W/cm^2$ with nanosecond and short laser pulses focused onto any materials. Phenomenologically, the surface temperature is instantaneously heated past its vaporization temperature. Before the surface layer is able to vaporize, underlying material will reach its vaporization temperature. Temperature and pressure of the underlying material are raised beyond their critical values, causing the surface to explode. The pressure over the irradiated surface from the recoil of vaporized material can be as high as $10^5\;MPa$. The interaction of high power nanosecond laser with a thin metal in air has been investigated. The nanosecond pulse laser beam in atmosphere generates intensive explosions of the materials. The explosive ejection of materials make the surrounding gas compressed, which form a shock wave that travels at several thousand meters per second. To understand the laser ablation mechanism including the heating and ionization of the metal after lasing, the temporal evolution of shock waves is captured on an ICCD camera through laser flash shadowgraphy. The expansion of shock wave in atmosphere was found to agree with the Sedov's self-similar spherical blast wave solution.