• Title/Summary/Keyword: 플라스틱 필름

Search Result 201, Processing Time 0.024 seconds

Study on preparation of a thin film type of ZnS(Ag) scintillator sheet for alpha-ray detection (얇은 필름 형태의 알파선 측정용 ZnS(Ag) 섬광 검출소재 제조 연구)

  • Seo, Bum-Kyoung;Jung, Yeon-Hee;Kim, Gye-Hong;Lee, Kune-Woo;Jung, Chong-Hun;Han, Myeong-Jin
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.389-393
    • /
    • 2006
  • The detector consisted of ZnS(Ag) scintillator and photomultiplier tube (PMT) is widely used as contamination monitor in the nuclear facilities. Such detectors are mainly manufactured by adhering the ZnS(Ag) powder onto the transparent plastic. In this study the preparation condition for ZnS(Ag) scintillator sheet using a simple method was established. The scintillator sheet was composed with a support polymer sheet and ZnS(Ag) scintillator layer. The base sheet was prepared by casting the polymer solution after solving the polymer with solvent and the scintillator layer was manufactured by printing the mixture solution with ZnS(Ag) and paste. It was found that the polysulfone(PSf) as a polymer for the base sheet and a cyano resin as a paste for adhering the ZnS(Ag) scintillator was suitable. Also, the prepared thin scintillator sheet had a sufficient mechanical strength, a optical transparency and an alpha-ray detection performance.

Efects of Biodegradable Mulching Films Containing Rice Powder on Sweetpotato Growth (쌀 분말이 함유된 생분해성 멀칭필름이 고구마 생육에 미치는 영향)

  • Sin Young Park;Ju Hyun Im;Eun Byul Go;Kil Ja Kim;Jae Min Park;Dong Kwan Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.123-132
    • /
    • 2024
  • In this study, two types of biodegradable film prototypes were produced using plastic resin containing rice powder. The application of these biodegradable films in sweetpotato (Ipomoea batatas L. Lam) fields and their impacts of plant growth, yield, and the soil environment were assessed, in comparison with Polyethylene (PE) film. The light transmittance of the biodegradable film containing 30% of 350 mesh rice powder (BF30-350RP) was 0.8%, which was lower than the 2.0% light transmittance of the biodegradable film containing 40% of 500 mesh rice powder (BF40-500RP) and 2.7% light transmittance of PE film. Surface temperature measurements on clear day indicated that the PE film exhibited the lowest temperature, with the minimal difference observed between BF40-500RP and BF30-350RP. Assessment of the damage ratio resulting from agricultural work revealed a ranking of 0.4% for the PE film, 3.3% for BF500-400RP, and 5.3% for BF350-30RP. Visible decomposition of BF40-500RP and BF30-350RP commenced after 40 and 30 days of outdoor exposure, reaching 62.3% and 70.4% decomposition at 90 days post-exposure, respectively. The decomposition of biodegradable films applied to sweetpotato fields progressed more slowly in BF40-500RP than in BF30-350RP. The BF40-500RP film on the surface of the ridges was decomposed by 5%, 30%, 55%, and 90% after 30, 60, 90, and 120 days after planting sweetpotato cuttings, respectively. Both types of biodegradable films at the ridge and furrow borders were completely decomposed after 75 days of sweetpotato planting. In a field where the surface was sealed by mulching without growing sweetpotatoes, the soil moisture and its deviation were lower in the order of PE film, BF40-500RP, and BF30-350RP, but the differences were not significant. The soil temperature was higher for PE film mulching than for the biodegradable films containing rice powder, but the differences were small. Two months after sweetpotato planting, the daily average soil moisture decreased by 2.5%point for BF30-350RP mulching, 1.5%point for BF40-500RP mulching, and 1.1%point for PE film mulching over seven days. Soil temperature was similar for both biodegradable film mulches, but increased steadily for the PE film mulch, reaching a daily average of 0.1℃ higher than for the biodegradable films. Sweetpotato vine growth and tuber yield were similar for all the mulching films tested.

The Applications of Antioxidant Impregnated Polymers to Food Packaging (식품포장의 항산화제 첨가 플라스틱의 용도)

  • Lee, Youn-Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.8 no.2
    • /
    • pp.49-59
    • /
    • 2002
  • The main function of plastic materials in food packaging is to preserve a food for safe transportation and storage. The interactions between food and plastic materials in food packaging have become increasingly important for food quality and safety because monomer, low molecular weight components, or additives of plastic packaging materials can migrate into a food. The use of antioxidants in plastic materials can help protect the degradation of film itself and retard the oxidation of a packaged food containing lipid, through the migration of antioxidant from the packaging to a product via an evaporation / sorption mechanism. Nowadays, antioxidant (BHT) impregnated plastic materials are used for commercial food packaging application with the intention of achieving an extended shelf life of food in USA. Alpha tocopherol, as one of the most important free radical scavengers, has been well known in biological systems. Moreover, the potential use of alpha tocopherol as an additive for polymers used in the packaging industry may offer the most positive perception from both consumers and manufacturers. Alpha tocopherol has been used as an antioxidant for polyolefin resins fabricated to both bottles and film and has applications in the food packaging industry as a replacement for BHT. Today, alpha tocopherol offers an attractive choice for use as an antioxidant in polymers. This paper provides an overview of antioxidant effectiveness and applications for its use by the food packaging industry based on the evaporation-sorption mechanism of a packaging model product, where quality is associated with lipid oxidation. Important analytical techniques for predicting antioxidant interaction between the package system and product are discussed.

  • PDF

Effects of Kind of Pot for Raising of Seedling and Planting Method on Growth and Fruit Characteristics in Cultivation of Watermelon under Plastic Film House (플라스틱필름 하우스 수박 재배에서 육묘 포트 종류 및 정식 방법이 생육 및 과실 특성에 미치는 영향)

  • Bae, Jong-Hyang;Lee, Sang-Uk;Choi, Jun-Hyuk;Kang, Nam-Hee;Kim, Ho-Cheol;Eun, Jong-Seon
    • Journal of Bio-Environment Control
    • /
    • v.19 no.2
    • /
    • pp.82-87
    • /
    • 2010
  • To investigate effects of kind of pot for raising of seedling (single plastic pot, double plastic pot, circular peat pot, square peat pot) and planting method of the pot (3/3, 2/3, and 1/3 by the buried degree of pot height) on watermelon (Citrullus lanatus) growth, this research was conducted under plastic film house. Since planting of seedlings, number, area and photosynthesis rate of leaves, plant height and weight were superior in seedling grown in double plastic pot than those grown in the others. In fruit characteristics harvested at 12 weeks after planting, fruit height, diameter and weight were longer in double plastic pot than in the others, also fruit peel thickness and hilum diameter were thicker and shorter. Initial growth of the plant after planting with seedling grown in double plastic pot was superior in method buried the 2/3 degree of the pot height than the other methods.

Synthesis and Film Properties of Cross-linked Polysulfone with Imide Side Chain (이미드 곁가지로 가교되는 폴리설폰의 합성 및 필름 특성)

  • Lee Eun-Sang;Hong Sung-Kwon;Kim Yong-Seok;Lee Jae-Heung;Kim In-Sun;Won Jong-Chan
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2006
  • The mort commonly available substrate material is glass in the display fibrication process. However, glass is not desirable due to its heaviness and fragility. Recently, plastics such polysulfone (PSF), polyethesulfone (PES), polycarbonate (PC), polyethylene terephthalate (PET) and cyclic olefin polymers (COP) have been investigated to replace glass as a substrate material for display fibrication. Plastic substrates are advantageous in that they are lightweight, huh impart resistance, flexibility, and ability for roll to roll manufacturing process. But many plastics have poor chemical resistance in organic solvent. The chemica resistance is also lequired because they are exposed to solvents for various chemical treatments din the manufacturing process. So, we have an interest in the chemical modification of PSF to improve chemical resistance. We introduced crosslinkable imide moieties using chloromethylation method for the modification of PSF which could be overcome above shortcomings for display substrate based on plastic film. We prepared the cross-linked polysulfone films which were represented chemical resistance in HeOH, THF, DMSO and NMP. The thermal properties were measured by TGA, DSC and TMA. As the results, we have confirmed to enhance of the thermal property. They had low coefficient of thermal expansion (CTE) which decreased to 15% and had increased $T_g\;from\;180^{\circ}C\;to\;252^{\circ}C$. Cross-linked polysulfone films with imide side-chain had good optical properties and chemical resistance so that they could be used as flexible display substrate.

Changes in Mineral and Pectic Substances of Korean Mature-Green Mume (Prunus mume Sieb. et Zucc) Fruits Packaged in Plastic Films with Gas Absorbents during Storage (가스 제거제 첨가에 따른 필름 포장 청매실의 저장 중 무기질 및 펙틴 성분 변화)

  • Cha, Hwan-Soo;Hong, Seok-In;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.149-154
    • /
    • 2003
  • Changes in mineral (Ca, Mg) contents and pectic substances of mature-green 'Nanko' Mume fruits hermetically packaged in 0.03 mm low density polyethylene (LDPE) films with and without gas absorbents were examined during storage at $25^{\circ}C$ for 10 days. Each packaging contained 10 g $Ca(OH)_2$ as a carbon dioxide scavenger, 30 g $KMnO_4$ as an ethylene scrubber or their mixture. In the presence of the ethylene scrubber, losses in mineral contents of alcohol insoluble solids and water soluble pectin were remarkably suppressed, whereas no significant difference was observed in the Ca content between the fresh fruit and those stored for 10 days. Fruits packaged with the ethylene absorbent retained higher amount of pectic substances than those with other packaging treatments. Degradation of the pectic substances into small molecules was also noticeably reduced when the ethylene scrubber was used. Overall results showed that the combination of the gas permeable film and the ethylene absorbent could be applied to mature-green Mume fruits as an effective packaging method to retard the texture softening during storage at the ambient temperature.

Effects of OTR Film Type on the Quality of Lepidium sativum L. Baby Leaf Vegetable during MA Storage (큰다닥냉이 어린잎채소의 MA저장 중 OTR 필름 종류가 품질에 미치는 영향)

  • Kim, Ju Young;Han, Su Jeong;Choi, In-Lee;Yoon, Jae Su;Moon, Young Hyun;Kim, Sang Min;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.180-184
    • /
    • 2018
  • This study was conducted to examine the effect OTR film type on the quality of garden cress (Lepidium sativum L.) baby leaf during MA storage. Garden cress harvested at baby leaf size of 10cm plant height packed with 1,300 cc, 10,000 cc, 20,000 cc, 40,000 cc, and $80,000cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ OTR (oxygen transmission rate) films and MP (micro-perforated) film, and then stored at $8^{\circ}C$ for 10 days. All of the OTR film treatments showed a decrease of 0.5% fresh weight until the storage end date and a 1.3% decrease in the MP film treatment. The oxygen concentration in the packaging during storage was maintained at 18% or more in 20,000 cc, 40,000 cc, and 80,000 cc OTR film treatments, while the 1,300 cc OTR film treatment decreased to 11% at the storage end date. And the concentration of carbon dioxide was steadily increased in the 1,300 cc and 10,000 cc OTR film treatments to show the levels of 4.5% and 3.4%, respectively, and the other OTR film treatments showed a concentration of less than 1%. Ethylene concentration in the package was maintained at the highest level of $3-5{\mu}L{\cdot}L^{-1}$ in the 1,300 cc treatment during the storage period. The lowest odor and the highest quality of appearance were observed in the 1,300 cc treatment, but the MP film treatment and the other OTR treatments lost marketable quality due to yellowing. The color of garden cress baby leaf was changed the lowest in 1,300 cc treatment that showed the highest chlorophyll content and Hue angle value, lowest $b^*$ value, present of yellowing at end of storage date. Therefore, 1,300 cc treatment which was most effective for yellowing and odor suppression during storage is considered to be suitable for packaging of garden cress baby leaf.

Fabrication of Miniature Radiation Sensor Using Plastic Optical Fiber for Medical Usage (플라스틱 광섬유를 이용한 초소형 의료용 방사선 센서 제작)

  • Hwang, Young-Muk;Cho, Dong-Hyun;Cho, Hyo-Sung;Kim, Sin;Lee, Bong-Soo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • In this study, film type radiation sensor tips are fabricated for remote sensing of X or g-ray with inorganic scintillators and plastic optical fiber. The visible range of light from the inorganic scintillator that is generated by X and g-ray is guided by the plastic optical fiber and is measured by optical detector and power-meter. It is expected that the fiber-optic radiation sensor which is possible to be developed based on this study is used for remote, fast and exact sensing of X or g-ray because of its characteristics such as very small size, light weight and no interference to electromagnetic fields.

  • PDF

Current Status and Improvements on Management of Plastic Waste in Korea (국내 폐플라스틱의 관리 현황 및 개선사항)

  • Choi, Yong;Choi, Hyeong-Jin;Rhee, Seung-Whee
    • Resources Recycling
    • /
    • v.27 no.4
    • /
    • pp.3-15
    • /
    • 2018
  • Since the use of plastics in various goods such as film, containers, and packaging has been increasing in Korea, the generation of plastic waste is increasing. Plastic wastes are managed by waste charge system, Extended Producer Responsibility (EPR) system and voluntary agreement of plastic waste collection-recycling system. Recently, the management of plastic waste is becoming a social issues due to the refusal of the collection of plastic waste including waste plastic bag and waste vinyl. The ministry of environment in korea was set up the comprehensive plan for recycling waste management in accordance with the circulation cycle of manufacturing and production - distribution and consumption - separate and discharge - collection and sorting - recycling. In this study, the improvements for management of plastic waste were suggested with the review of domestic waste plastics management and the comprehensive plan by the ministry of environment.

Micro Pulverization and Surface Modification of Biomass Byproducts for Developing Bio-Degradable Plastic Film (생분해 플라스틱 필름 제조를 위한 바이오매스 부산물의 분체화 및 표면개질 연구)

  • Chung, Sung Taek;Han, Jung-Gu;Lee, Roun;Kim, Pan-Chae;Kuk, YoungRye;Choi, ChunHoan;Park, Hyung Woo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • This study investigated the characteristics for rice husk pulverization and surface modification of biomass byproducts composed of rice husk, corn extract gourd, wheat bran, and soybean curd. The size of particles of rice husk was at 6.44 ㎛ and represented the most affordable material for preparing the bio-degradable film among the tested byproducts. The silane treatment and adding 2% of ESO (Epoxidized soybean oil) and 3-aminopropyl triethoxysilane solution mixed in a 1:1 ratio were best to the surface modification and SEM-based particle shape. Above the results, adding 2% of mixed solution after silane treatment of rice husks processed through an air classifying mill (ACM) allows for its use as a raw material of bio-degradable plastic film.