• Title/Summary/Keyword: 플라스틱 렌즈

Search Result 86, Processing Time 0.025 seconds

Design of Smart Phone Camera Lens Using Forbes Aspherical Surface (Forbes 비구면을 사용한 스마트폰 카메라렌즈의 설계)

  • Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.4
    • /
    • pp.141-145
    • /
    • 2017
  • We design an F/1.8 smart -phone camera lens utilizing he Forbes aspherical-surface equation, which can effectively create a strong asphere, compared to the conventional, standard aspherical equation. We also describe the principal methodology and procedural steps of optical design to achieve specifications.

Ultra-Compact Zoom Lens Design for Phone Camera Using Hybrid Lens System (복합렌즈계를 이용한 폰 카메라용 초소형 줌렌즈 설계)

  • Park, Sung-Chan;You, Byoung-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.349-359
    • /
    • 2008
  • For an inner-focusing 3-groups zoom lens system, this study suggests a new initial design method which applies the process that changes thin lenses into thick ones effectively and quickly, using the hybrid lens system(thin lens+thick lens). In other words, the hybrid lens system is the semi-automatic design process that makes the thin lens of one group change into a thick one while the other groups are composed of thin lenses. Keeping the total power of the system fixed, the power of each group and the distance between principal planes can be fixed. Of course, the other groups composed of thin lenses could be changed into thick lenses sequentially by this process. This design conception results in the 1/4" 5 M inner-focusing 3-groups 2x zoom lens system satisfying the specifications and performances of zoom lens for phone cameras. Also aspherization on lens elements of glass and plastic material enhanced the resolution and reduced the lens size. As a result, we have an ultra-compact inner-focusing 3-groups 2x zoom lens system for a phone camera, with a slim size with TTL of 9.8 mm.

과학리포트-우리생활 바꿔놓은 고분자 신소재

  • Lee, Gwang-Yeong
    • The Science & Technology
    • /
    • v.28 no.4 s.311
    • /
    • pp.14-15
    • /
    • 1995
  • 가볍고, 단단하고 팽창하지 않으며 타지도 않는 첨단 고분자 신소재 비닐을 비롯한 플라스틱 등이 우리의생활을 크게 바꾸어 놓고 있다. 요즈음엔 산소투과능이 우수한 특수불소수지 콘택트렌즈가 개발되어 인기를 끌고 있는데 이러한 첨단 고분자 신소재의 개발현황을 알아본다.

  • PDF

Retardation Analysis of Plastic Optic Lens according to Injection Speed Variation (사출속도 변화에 따른 플라스틱 광학렌즈의 위상차 해석)

  • Park, Soo-Hyun;Kim, Tae-Kyu;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • This study focuses on simulation technology in the injection molding process for plastic optic lenses. The CAE program 3D TIMON was used to predict retardation, flow patterns and warpage deformation. The results were compared to the results of optic lenses as measured using the WPA-100 retardation measurement device with injection molding CAE for retardation predictions. According to the analysis and measured results, the distributions of retardation between the CAE results and the measurement results were similar. It was also confirmed that varying the injection speed had an effect on the injection pressure, warpage deformation and retardation distribution. As the injection speed increases, the injection pressure also increases and warpage deformation decreases. However, as the injection speed increases, the retardation distribution deteriorates.

A study on searching method of molding condition to control the thickness reduction of optical lens in plastic injection molding process (플라스틱 광학렌즈 사출성형에 있어서 수축 변형량 예측을 위한 사출성형 조건 탐색에 관한 연구)

  • 곽태수;오오모리히토시;배원병
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2004
  • In the injection molding of plastic optical lenses, the molding conditions have critical effects on the quality of the molded lenses. Since there are many molding parameters involved in injection molding process, determination of the molding conditions for lens molding is very important in order to precisely control the surface contours of an optical lens. Therefore this paper presents the application of neural network in suggesting the optimized molding conditions for improving the quality of molded parts based on data of FE Analysis carried out through CAE software, Timon-3D. Suggested model in this paper, which serves to learn from the data of FE Analysis and induce the values for optimized molding conditions. has been implemented for searching the molding conditions without void and with minimized thickness shrinkage at lens center of injection molding optical lens. As the result of this study. we have confirmed that void creation at the inside of lens is primarily determined by mold temperature and thickness shrinkage at center of lens is primarily determined by the parameters such as holding pressure and mold temperature.

Thermally Curable Organic-inorganic Hybrid Coatings on Ophthalmic Lenses by the Sol-Gel Method (졸-겔법에 의한 안경렌즈의 열경화형 유-무기 하이브리드 코팅)

  • Yu Dong-Sik;Lee Ji-Ho;Ha Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.465-470
    • /
    • 2006
  • Coating are needed on ophthalmic lenses to enhance both the mechanical durability of the relatively soft plastic surface and the optical performance of lenses. Organic-inorganic hybrid materials as molar ratio of 3-glycidoxypropyltrimethoxysilane(GPTS), methyltrimethoxysilane(MTMS) and tetraethyl orthosilicate(TEOS) were used to improve the surface characteristics and the optical properties on allyl diglycol carbonate lenses. Coating for these plastics were at $140^{\circ}C$ for 4hrs, applied using the sol-grl process flow-coating technique. The coated lens properties of transmittance, adhesion, pencil hardness, abrasion resistance, hot water resistance and chemical resistance were investigated. The optimum properties was obtained when the ratio of GPTS : MTMS : TEOS was 1:1:2, respectively.

  • PDF

Study on Real Time Sensor Monitoring Systems Based on Pulsed Laser for Microplastic Detection in Tap Water (펄스 레이저 기반 담수용 미세 플라스틱 실시간 센서 모니터링 시스템 연구)

  • Han, Seung Heon;Kim, Dae Geun;Jung, Haeng Yun;Kim, Seon Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.294-298
    • /
    • 2019
  • Pulsed laser-based optical sensor monitoring systems for real time microplastic particle counting are proposed and developed in this study. To develop our real time monitoring system, we used a 450 nm pulsed laser and a photomultiplier with very high quantum efficiency. First, we demonstrated that the microplastic particle counting system could detect standard micro bead samples of 100, 250, and $500{\mu}m$ in river water. We then performed research concerning pulsed laser-based optical spectral sensor systems for real time microplastic monitoring. Additionally, we demonstrated that the real time microplastic remote monitoring system using LoRa communications could detect microplastic in the tap water resource protection area.

Out-of-plane Deformation Measurement of Spherical Glasses Lens Using ESPI (ESPI를 이용한 구면 안경렌즈의 면외 변형 측정)

  • Yang, Seung-Pill;Kim, Kyoung-Suk;Jang, Ho-Sub;Kim, Hyun-Min
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.77-81
    • /
    • 2007
  • The spherical lens is typically classified by the refractive power into two groups such as (+) diopter lens and (-) diopter lens. The deformation occurred by the external force that is applied to a lens is caused by the increase or the decrease in the diopter of a lens. In this paper, the deformation of the lens was quantitatively measured by using ESPI (Electronic Speckle Pattern Interferometry) which have been used in the optical measurement field for past few years. ESPI has an advantage that the deformation of an object can be measured precisely by using coherence of the light. The experiment was carried out to the totally 16 types of plastic lens. It was confirmed that the deformation was decreased by increasing the diopter of the lens when same displacement was applied to the lens in case of (+) diopter lens and was increased by decreasing the diopter of the lens in case of (-) diopter lens. Also, it was found that the deformation of (+) diopter lens is less than that of (-) diopter lens. Therefore, with these results, it is expected that the possibility of the quantitative measurement for variation of the optical defect caused by the deformation of a lens when the deformation is occurred to the various types of the lens can be presented and that the application in the lens industrial field can be performed.

  • PDF