• Title/Summary/Keyword: 플라보노이드 조성 변이

Search Result 5, Processing Time 0.021 seconds

Flavonoid Profiles of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray (Fagaceae) in Mt. Seorak, Korea: Taxonomical and Ecological Implications (설악산 신갈나무와 졸참나무의 플라보노이드 조성과 분류학적, 생태학적 의미)

  • Park, Jin Hee
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1092-1101
    • /
    • 2014
  • In this study, the distribution patterns of Quercus mongolica and Q. serrata in Korea were investigated, and the possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Seorak was inferred by flavonoid analyses. The most critical factor in the vertical and horizontal distribution patterns of Q. mongolica and Q. serrata was the temperature, in accordance with latitude and altitude. The species showed a zonal distribution, with a Q. mongolica zone in the upper area and a Q. serrata zone in the lower area. In Mt. Seorak, Central Korea, the range of the vertical distribution of Q. mongolica was generally above an altitude of 100 m, whereas that of Q. serrata was an altitude of 0-400 m (-500) and rarely above an altitude of 500 m. However, in Mt. Jiri, Southern Korea, Q. serrata was found up to an altitude of 1,000~1,200 m, whereas the frequency of Q. mongolica was reduced at lower elevations and the species was rare below an altitude of 300 m, although pure stands were found on higher mountain slopes above an altitude of 1,200 m. The altitudinal distribution of the two species overlapped, where the two species occurred together. The leaf flavonoid constituents of thirty-four individuals of Q. mongolica and Q. serrata in Mt. Seorak and Mt. Jiri, Korea were examined. Twenty-four flavonoid compounds were isolated and identified. These were glycosylated derivatives of flavonols kaempferol, quercetin, isorhamnetin, myricetin. Five compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside, a high concentration of three acylated compounds (kaempferol 3-O-glucoside, quercetin 3-O-glucoside, and quercetin 3-O-galactoside), and a relatively low concentration or lack of rhamnosyl flavonol compounds. Intraspecific variations, however, were found in the flavonoid profiles of Q. mongolica and Q. serrata, and the flavonoid profiles of individuals belonging to the two species in a hybrid zone (sympatric zone) tended to be similar, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through introgressive hybridization between Q. mongolica and Q. serrata in Mt. Seorak.

Phytochemical variation of Quercus mongolica Fisch. ex Ledeb. and Quercus serrata Murray (Fagaceae) in Mt. Jiri, Korea - Their taxonomical and ecological implications - (지리산 신갈나무와 졸참나무의 식물화학적 변이 양상 - 분류학적, 생태학적 의미 -)

  • Park, Jin Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.574-587
    • /
    • 2014
  • In this study, vertical distribution patterns of Quercus mongolica Fisch. ex Ledeb. and Q. serrata Murray in Korea were recognized and possibility of introgressive hybridization and gene flow between Q. mongolica and Q. serrata in Mt. Jiri was inferred by flavonoid analyses. The most critical factor on distribution patterns was the altitude in accordance with temperature condition. A zonal distribution was recognized: Quercus mongolica zone in the upper area and Q. serrata zone in the lower area. In Central Korea, the range of vertical distribution of Q. mongolica was above alt. 100m, almost everywhere, whereas that of Q. serrata was from alt. 0 m to alt. 500(-700) m, and the species is rare above that altitude. But in Southern Korea, Q. serrata is found up to above alt. 1,000 m, whereas frequency of Q. mongolica reduces as elevation in decline and the species is rare below alt. 300 m, even though pure stands being formed on higher mountain slope. Altitudinal distribution of the two species, however, overlaps, where the two species occur together. Thirty-seven individuals of Q. mongolica and Q. serrata in Mt. Jiri and other area were examined for leaf flavonoid constituents. Twenty-three flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols kaempferol, quercetin, isorhamnetin, myricetin, and four compounds among the flavonoid compounds were acylated. Kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside and its acylated compounds were major constituents and present in all individuals. Quercus mongolica is distinguished from Q. serrata by the presence of quercetin 3-O-arabinosylglucoside and by high concentration of three acylated compounds, acylated kaempferol 3-O-glucoside, quercetin 3-O-glucoside, quercetin 3-O-galactoside, and by relatively low concentration or lacking of rhamnosyl flavonol compounds. There are intraspecific variations in flavonoid profiles for Q. mongolica and Q. serrata, the flavonoid profiles for individuals of two species in hybrid zone (sympatric zone) tend to be similar to each other, qualitatively and quantitatively. These findings strongly suggest that gene exchange or gene flow occurs through the introgressive hybridization between Q. mongolica and Q. serrata in Mt. Jiri. Therefore, Quercus crispula, occupying morphologically intermediate position between Q. mongolica and Q. serrata, is suspected of being a hybrid taxon of two putative parental species.

Change in Plant Growth and Physiologically-Active Compounds Content of Taraxacum officinale under Plastic House Condition (시설재배조건에서 서양민들레의 생육 및 생리활성물질 변이 연구)

  • Chon, Sang-Uk;Park, Jung-Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.449-455
    • /
    • 2012
  • Greenhouse and laboratory experiments were conducted to determine the effects of shade treatment and substrate components on plant growth and physiological activity of Taraxacum officinale. Substrates combined with coco peat and perlite (ratio 70 : 30 and 50 : 50, v/v) showed higher growth and yield than their single substrates (p<0.05). Shade treatment also significantly reduced plant height, root length, root diameter, leaf area, chlorophyll content, and fresh weight (p<0.05), compared to no shade. Contents of total phenolics [mg chlorogenic acid equivalents (CAE) $kg^{-1}$ DW] and total flavonoids [mg naringin equivalents $kg^{-1}$ DW] showed higher amounts in shoot parts than root parts of T. officinale, with shade than no shade. The antioxidant potential of the methanol extracts from the plants dose-dependently increased. DPPH (1,1-diphenyl-2-picryl hydrazyl radical) free radical scavenging activity was higher in leaf parts than in root parts of the plants, and no shade than with shade.

Physicochemical quality characteristics of hot water extracts of processed ginseng based on different heat treatments (열처리 방법에 따른 가공 인삼 열수추출물의 이화학적 품질 특성)

  • Kang, Yoon-Han;Zhou, Rui;Kim, Hyo Jin;Kim, Ji Eun;Shin, Il Shik
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.155-163
    • /
    • 2018
  • The present study was carried out to investigate the physicochemical properties of hot water extracts of red ginseng powder prepared by two-stage hot air drying method using steamed ginseng and steaming liquid for 2.5 h under high-temperature and high-pressure autoclave condition. The total polyphenols, total flavonoids, total sugar, acid polysaccharides and crude saponin in hot water extracts from red ginseng powder were analyzed and determined, and the flavor components of ginseng were measured using color difference meter and an electronic tongue. The total polyphenol, total flavonoid, total polysaccharide, and acid polysaccharide of the red ginseng hot water extract obtained by autoclaving (ARG) were 9.06 mg GAE/g, 3.38 mg NE/g, 35.22 g/100 g, and 10.90 g/100 g, respectively. The final contents of the total polyphenols, total flavonoids, crude saponin were higher than those determined using other red ginseng methods; the time required for steamed red ginseng production reduced. The total ginsenoside content of ginseng including Rb1 was 10.69 mg/g, which is the lowest ARG. The processing conditions affected the conversion to ginsenosides unique to red ginseng. Red ginseng and steaming liquid obtained from the autoclave are expected to be in need for non-food materials and products as well as foods by improving the flavor components through conversion of red ginseng components into low molecular weight.

Flavonoid chemistry of Fallopia sect. Reynoutria (Polygonaceae) in Korea (한국산 닭의덩굴속 호장근절(마디풀과)의 화학분류학적 연구)

  • Park, Jin Hee;Moon, Hye-Kyoung;Park, Chong-Wook
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • Fifteen populations comprising three taxa and a putative hybrid of Fallopia sect. Reynoutria in Korea were examined for their leaf flavonoid constituents. Nineteen flavonoid compounds were isolated and identified; they were glycosylated derivatives of the flavonols quercetin and kaempferol, and of the flavones apigenin and luteolin. Among them, quercetin 3-O-galactoside and quercetin 3-O-glucoside were major flavonoid constituents, and present in all taxa. The flavonoid data appear to be very useful for taxon delimitation, and all taxa examined are readily distinguished by their flavonoid profiles. In addition, the flavonoid data suggest that the Nonsan population may be of hybrid origin involving F. japonica var. japonica, F. forbesii, and F. sachalinensis. In F. japonica var. japonica, there is no apparent correlation between their levels of polyploidy and flavonoid chemistry, but geographical variation of the flavonoid profiles among some populations was detected.