• 제목/요약/키워드: 프리픽스-섬 큐브

검색결과 2건 처리시간 0.022초

SPEC : 데이타 웨어하우스를 위한 저장 공간 효율적인 큐브 (SPEC: Space Efficient Cubes for Data Warehouses)

  • 전석주;이석룡;강흠근;정진완
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제32권1호
    • /
    • pp.1-11
    • /
    • 2005
  • 군집 질의는 사용자에 의해 명시된 질의 영역 내에서 큐브상의 군집 정보를 계산한다. 프리픽스-섬 기법에 기초한 기존의 방법론은 데이타의 누적된 합을 저장하기 위해 프리픽스-섬 큐브(PC)로 불리는 부가적인 큐브를 사용하므로 높은 저장공간 오버헤드를 초래한다. 이러한 저장공간 오버헤드는 기억장치의 추가적인 비용뿐만 아니라 업데이트의 부가적인 증식(propagation)과 더 많은 물리적 장치로의 접근시간을 유발시킨다. 본 논문에서는 대용량 데이타 웨어하우스에서 PC의 저장공간을 획기적으로 감소시킬 수 있는 'SPEC'으로 불리는 새로운 프리픽스-섬 큐브를 제안한다. SPEC은 PC내 셀들간의 종속에 의한 업데이트 증식을 감소시킨다. 이를 위해 대용량 데이타 큐브로부터 조밀한 서브큐브들을 발견하는 효과적인 알고리즘을 개발한다 다양한 차원의 데이타 큐브와 여러 가지 크기의 질의에 대해 폭 넓은 실험을 행하여 본 논문에서 제안한 방법의 효과와 성능을 조사한다. 실험적인 결과는 SPEC이 적절한 질의 성능을 유지하면서도 PC 저장공간을 상당히 감소시킴을 보여준다.

다이나믹 데이터 웨어하우스 환경에서 OLAP 영역-합 질의의 효율적인 처리 방법 (Efficient Processing method of OLAP Range-Sum Queries in a dynamic warehouse environment)

  • 전석주;이주홍
    • 정보처리학회논문지D
    • /
    • 제10D권3호
    • /
    • pp.427-438
    • /
    • 2003
  • 데이터 웨어하우스에서 사용자는 전형적으로 상호작용적으로 질의를 부여함으로서 추세와 패턴 또는 예외적인 데이터의 행위를 검색한다. OLAP 영역-합 질의는 데이터 웨어하우스에서 추세를 발견하거나 또는 애트리뷰트들간의 관계를 발견하는데 폭 넓게 사용되고 있다. 최근의 기업환경은 데이터 큐브의 데이터 요소들이 자주 바뀌게 된다. 문제는 프리픽스 섬 큐브를 업데이트하는 비용이 매우 크다는 것이다. 이 논문에서는Δ-트리로 불리는 인덱싱 구조를 사용하여 업데이트 비용을 상당히 줄이는 참신한 알고리즘을 제안한다. 또한, 근사 또는 정확한 해를 제공하므로 질의의 전체비용을 줄일 수 있는 하이브리드 방법을 제안한다. 이는 의사 결정 지원 시스템과 같이 시간을 많이 소비하는 정확한 해보다는 빠른 근사 해를 필요로 하는 다양한 응용들에 큰 장점이 있다. 폭 넓은 실험은 우리의 방법이 다른 방법들과 비교하여 다양한 차원에서 매우 효율적으로 수행됨을 보여준다.