• Title/Summary/Keyword: 프리텐션

Search Result 111, Processing Time 0.021 seconds

Ultimate Stress of Unbonded Tendons in Post-Tensioned Flexural Members (포스트텐션 휨부재에서 비부착긴장재의 극한응력)

  • Lee, Deuck-Hang;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.489-499
    • /
    • 2009
  • It is quite difficult to predict the flexural strength of post-tensioned members with unbonded tendons (unbonded posttensioned members, UPT members) because of debonding behavior between concrete and prestressing tendons, which is different from that with bonded tendons. Despite many previous researches, our understanding on the flexural strength of UPT members is still insufficient, and thus, national codes use different methods to calculate the strength, which quite often give very different results. Therefore, this paper reviews various existing methods, and aims at proposing an improved rational strength model for UPT flexural members having better accuracy. Additionally, a database containing a large number of test data on UPT flexural members has been established and used for verification of the proposed flexural strength model. The analysis results show that the proposed method provides much better accuracy than many existing methods including the rigid-body model that utilizes the assumption of concentrated deformation and plastic hinge length, and that it also gives proper consideration on the effects of primary parameters such as reinforcement ratio, loading pattern, concrete strength, etc. Especially, the proposed method also well predicts the ultimate stress of unbonded tendons of over-reinforced members, which are often possible in construction fields, and high strength concrete members.

Shear Behavior of Post-tensioning PSC Beams with High Strength Shear Reinforcement (고강도 전단보강철근을 사용한 포스트텐션 프리스트레스트 콘크리트 보의 전단거동 평가)

  • Jun, Byung-Koo;Lee, Jea-Man;Lim, Hye-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.33-40
    • /
    • 2016
  • The KCI-12 and ACI 318-14 design codes limit the maximum yield strength of shear reinforcement to prevent concrete compressive crushing before the yielding of shear reinforcement. The maximum yield strength of shear reinforcement is limited to 420 MPa in the ACI 318-14 design code, while limited to 500 MPa in the KCI-12 design code. A total of eight post-tensioning prestressed concrete beams with high strength shear reinforcement were tested to observe the shear behavior of PSC beams and the applicability of the high strength reinforcement was thus assessed. In the all PSC beam specimens that used stirrups greater than maximum yield strength of shear reinforcement required by the ACI 318-14 design code, the shear reinforcement reached their yield strains. The observed shear strength of tested eight PSC beams was greater than the calculated ones by the KCI-12 design codes. In addition, the diagonal crack width of all specimens at the service load was smaller than the crack width required by the ACI 224 committee. The experimental and analytical results indicate that the limitation on the yield strength of shear reinforcement in the ACI 318-14 design code is somewhat under-estimated and needs to be increased for high strength concrete. Also the application of high strength materials to PSC is available with respect to strength and serviceability.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

Design Methodology of Longitudinal Post Tensioning for Post-Tensioned Concrete Pavement (포스트 텐션드 콘크리트 포장의 종방향 긴장 설계 방안)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.203-215
    • /
    • 2009
  • This study was conducted to develop the design methodology of longitudinal post tensioning for the post-tensioned concrete pavement (PTCP). The longitudinal stress distribution in the PTCP slab was analyzed when post tensioning was applied. Then, the tensile stress distribution in the PTCP slab due to the environmental and vehicle loads needed for the design was investigated. In addition, prestress losses were calculated considering the losses due to the frictional resistance between the slab and underlying layer and due to various reasons related to tensioning. The tensile stresses used for the design were obtained by adding the stresses from the critical conditions under both the environmental and vehicle loads. The prestress losses were obtained by considering actual field conditions. The effective post tensioning amount was determined by considering the design loads including environmental and vehicle loads and various losses, and the effect of the allowable tensile stress on the post tensioning amount was investigated. The initial stage of the design of the longitudinal post tensioning is to obtain the stresses under the design loads and the required prestress determined by subtracting the allowable tensile stress from the design stress. Then, the optimal tendon spacing and the tensioning amount can be obtained by comparing with the effective tensioning amount including various stress losses.

  • PDF

Development of Hybrid OCB Beam for the Long-span Building Structures (장경간 건축구조를 위한 하이브리드 OCB보의 개발)

  • Lee, Doo-Sung;Kim, Sang-Yeon;Kim, Tae-Kyun
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2015
  • The building structure in Korea is planned to maximize the use of space in recent. The hybrid OCB(Optimized Composite Beam) beam is developed to take advantage of using the space. The OCB beam is composed of the steel H-beam section reinforced by open strands in negative moment zone and the pretensioned PSC concrete section in positive zone. Flexural behavior of typical architectural hybrid OCB beam section was investigated by F.E.M. The 15m, 20m, 30m OCB models were tested on nonlinear material and geometry under static loading system. Following results are obtained from the analysis; 1)The OCB beam develop initial flexural cracking over full service loading. 2)Overall deflections of OCB beam under the service loads are less than those of the allowable limits in KCI Code(2012). 3)The ultimate load capacity get over the nominal strength of the OCB main section. The OCB beam is verified of structural reliability from the finite element analysis.

Assessment of Applicability of Pretentioned Soil-Nail Systems with in-situ monitoring (현장 계측을 통한 프리텐션 쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Ahn, Kwang-Kuk;Kim, Hong-Taek;Bang, Yoon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.320-329
    • /
    • 2005
  • The use of diverse methods for the retaining system has been continuously increased in order to maintain the stability during excavation. However, ground anchor system occasionally may have the restriction in urban excavation sites nearby the existing structures because of space limitation. In this case, soil nailing system with relatively short length of nails could be efficiently useful as an alternative method. The general soil nailing support system, however, may result in excessive deformations particularly in excavating the zone of weak soils or nearby the existing structures. Therefore, applying the pretension force to the soil nails then could play important roles to reduce deformations mainly in an upper part of the nailed-soil excavation system as well as to improve the local slope stability. In this study, a newly modified soil nailing technology named as the PSN(Pretention Soil Nailing) is developed to reduce both facing displacements and ground surface settlements during top-down excavation process as well as to increase the global slope stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the field tests including pull-out tests were fulfilled to investigate the behavior of characteristics for PSN system. All results of tests were also analyzed to provide a fundamental and efficient design.

  • PDF

Stability Analysis and Application Evaluation of the Pretensioned Soil Nailing Systems (프리텐션 쏘일네일링 시스템의 안정해석 및 적용성 평가)

  • Kim, Hong-Taek;Park, Si-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.783-790
    • /
    • 2004
  • In this study, a newly modified soil nailing technology named as the PSN(pretensioned soil nailing) system, is developed to reduce both facing displacements and ground surface settlements in top-down excavation process as well as to increase the global stability. Up to now, the PSN system has been investigated mainly focusing on an establishment of the design procedure. In the present study, the analytical procedure and design technique are proposed to evaluate maximum pretension force and stability of the PSN system. Also proposed arc techniques to determine the required thickness of a shotcrete facing and to estimate probability of a failure against the punching shear. Based on the proposed procedure and technique, effects of the radius of a influence circle and dilatancy angle on the thickness of a shotcrete facing, bonded length and safety factors arc analyzed. In addition, effects of the reduction of deformations expected by pretensioning of the soil nails are examined in detail throughout an illustrative example and $FLAC^{2D}$ program analysis. And a numerical approach is further made to determine a postulated failure surface as well as a minimum safety factor of the proposed PSN system using the shear strength reduction technique with the $FLAC^{2D}$ program. Global minimum safety factors and local safety factors at various excavation stages computed in case of the PSN system arc analyzed throughout comparisons with the results expected in case of the general soil nailing system. The efficiency of the PSN system is also dealt with by analyzing the wall-facing deformations and the adjacent ground surface settlements.

  • PDF

Experimental Study on the Static Behavior of the Spliced PSC Box Girder (분절 PSC 박스거더의 정적거동에 관한 실험적 연구)

  • Chung, Won-Seok;Kim, Jae-Hueng;Chung, Dae-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.433-439
    • /
    • 2007
  • The main objective of the paper is to investigate the static behavior of a prestressed concrete (PSC) girder that has been spliced with precast box segments. A 20 m long full-scale spliced PSC girder is fabricated and tested to compare its static performance against a monolithic girder. The monolithic girder has the same geometric and material properties with respect to the spliced girder. This includes infernal strain, deflections, neutral axis position, and crack patterns for both girders. The test also consists of monitoring relative displacements occurring across the joints. Both the horizontal displacement (gap) and vertical displacement (sliding) are measured throughout the loading procedure. All results have been compared to those obtained from the monolithic girder. It has been demonstrated that the spliced girder offers close behavior with respect to the monolithic girder up to the crack load. Both girders exhibits ductile flexural failure rather than abrupt shear failure at joints.

Dynamic Analysis of Floating Bridge Subject to Earthquake Load Considering Multi-Support Excitation (다중지점 가진 효과를 고려한 부유식 교량의 지진응답 해석)

  • 권장섭;백인열;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • Dynamic response analysis is conducted for a floating bridge subjected to multiple support earthquake excitation. The floating bridge used in this study is supported by discrete floating pontoons and horizontal pretension cables supported at both ends of the bridge. The bridge is modeled with finite elements and the hydrodynamic added mass and added damping due to the surrounding fluid around pontoons are obtained using boundary elements. During the analysis the concept of retardation function is utilized to consider the frequency dependency of the hydrodynamic coefficients. Multiple support excitation is introduced at both ends of the bridge and the time history response is compared to that of a simultaneous excitation. The results show that the multiple support excitation yields larger values in some responses. for example in cable tensions. than the sumultaneous excitation.

Shear Behavior of Precast Prestressed Inverted-Tee Concrete Beams with Dapped Ends (프리캐스트 프리스트레스트 콘크리트 역티형보의 댑단부 전단거동)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.46-53
    • /
    • 2001
  • Two full scale precast pretensioned dapped ended rectangular beams designed by PCI design handbook for a major domestic live load of market and parking building - 500kgf/㎡ and 1,200kgf/㎡ were investigated experimentally. The bottom length of beams was 60cm which was same to the length of rectangular column in the base of five-story market or parking buildings. The height of dap was web hight plus half of the flange height within the allowable limit of PCI method. Shear tests were performed on four beam ends. Followings were obtained from the experimental study. All of the specimens were fully complied with the PCI design handbook. Two of four specimens which were designed for live load of 1,200kgf/㎡ showed crackings at the re-entrant corner of dap before the full service loadings, and failed by direct shear at the load level much less than their calculated nominal strength. The specimens designed for live load of 1,200kgf/㎡ failed at 772 tonf and 78.36tonf by direct shear crackings. This strength was less than PCI limit of 81.9 tonf and higher than ACI limit of 65.62tonf. Thus, the limit suggested by ACI seems more reasonable in regard of safety in view of this test results. According to load-strain curves, the strain of hanger reinforcement reached almost yield strain. It is recommended to use more inclined hanger reinforcement of improve the strength and serviceability.