• Title/Summary/Keyword: 프리캐스트 바닥판

Search Result 96, Processing Time 0.029 seconds

Experimental Study on the Cracking Loads of LB-DECKs with Varied Cross-Section Details (단면 상세가 변화된 LB-DECK의 균열하중에 대한 실험적 연구)

  • Youn, Seok-Goo;Cho, Gyu-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.657-665
    • /
    • 2011
  • LB-DECK, a precast concrete panel type, is a permanent concrete deck form used as a formwork for cast-in-place concrete pouring at bridge construction site. LB-DECK consists of 60 mm thick concrete slab and 125 mm height Lattice-girders partly embedded in the concrete slab. These decks have been applied to the bridges, which girder spacings are short enough to resist longitudinal cracking caused by construction loads. This paper presents experimental research work conducted to evaluate the cracking load of LB-DECKs designed for long span bridge decks. Twenty four non-composite beams and four composite beams are fabricated considering three design variables of thickness of concrete slab, height of lattice-girder, and diameter of top-bar. Static loads controlled by displacements are applied to test beams to obtain cracking and ultimate loads. Vertical displacements at the center of beams, strains of top-bar, crack propagation in concrete slab, and final failure modes are carefully monitored. The obtained cracking loads are compared to the analytical results obtained by elastic analyses. Long-term analyses using age-adjusted effective modulus method (AEMM) are also conducted to investigate the effects of concrete shrinkage on the cracking loads. Based on the test results, the tensile strength and the design details of LB-DECKs are discussed to prevent longitudinal cracking of long span bridge decks.

Experimental Study on the Long Span Precast Decks (프리캐스트 장지간 바닥판의 정적 및 피로실험)

  • 이한주;이용우;정철헌;김인규;전세진;정운용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.463-468
    • /
    • 2002
  • Transverse prestressing of bridge decks is an attractive concept with substantial benefits in both economy and crack control in slabs. To evaluate the necessary information for the prestressed long span bridge slab design, a series of static and fatigue tests were peformed. It is shown that the minimum thickness recommendation in Korean Highway Bridge Design Code is too conservative.

  • PDF

Behaviors of Precast Concrete Bridge Decks under Wheel Load (윤하중조건에서의 프리캐스트 콘크리트 바닥판 거동 특성)

  • Joo Bong Chul;Park Hung Seok;Kim Young Jin;Song Jae Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.303-306
    • /
    • 2005
  • For checking influence of load-position and system of stress-transmission in precast concrete bridge deck system, the test composite bridge was made a experiment by the wheel load machine. The result of experiment was the loop joint system of the precast decks has a difference which was the transmission system of longitudinal stress, comparing with general RC bridge deck system. The loop joint system has a behavior independently.

  • PDF

Evaluation of Structural Behaviour of a Composite CFT Truss Girder Bridge (CFT 트러스 거더 합성형교의 구조거동 평가)

  • Chung, Chul-Hun;Kim, Hye-Ji;Song, Na-Young;Ma, Hyang-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2A
    • /
    • pp.149-159
    • /
    • 2010
  • This paper presents an experimental study on the structural behavior of composite CFT truss girder bridge with full depth precast panels. The length of span is 20,000 mm. The CFT truss girder is a tubular truss composed of chord members made of concrete-filled and hollow circular tubes. To determine fundamental structural characteristics such as the strength and deformation properties of composite CFT truss girder bridge, static and dynamic tests were conducted. The natural frequencies calculated by the FEM are in good agreement with experimental results obtained from dynamic test. Bracing have only a small effect on the natural frequencies of composite CFT truss girder bridge as indicated by the FEM results. The yield strength and deformation of the composite CFT truss girder bridges were investigated through a static bending test. Besides, the test results showed that uniform distribution of shear connectors can be applicable in composite CFT truss girder bridges.

A Study on the Structural Behavior of LB-DECK Panel Considering Rebar-Arrangement in Site (현장 배근이 LB-DECK 패널의 구조거동에 미치는 영향)

  • Lho, Byeong-Cheol;Cho, Gyu-Dae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.167-174
    • /
    • 2008
  • The objective of this study is to verify whether the composite action is sufficiently strong to withstand at the interface and the structural behavior of LB-DECK panel with field concrete slab strengthened with main reinforcing bars. Static and fatigue tests are performed for LB-DECK panels with varied shapes and amounts of rebars, and the results are compared with those of field concrete panel(FCP). The test results indicate that the LB-DECK panel with 1.5 times of more rebars inside significantly increase the overall stiffness. LB-DECK penel usually shows on average 52.1 percent of improved stiffness compared with the FCP. The fatigue test results also show that the LB-DECK panel can withstand two-million cycles of repeated loads without any damage.

Trial Construction of FRP-Concrete Composite Deck for Cable-Stayed Bridge (사장교용 FRP-콘크리트 합성바닥판의 시험시공)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Keun-Hee;Cho, Jeong-Rae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.43-44
    • /
    • 2010
  • We developed a new FRP-concrete composite deck applicable to a cable-stayed bridge, and applied to a trial bridge for test purpose. From this trial construction, we verified constructability and structural performances of this deck system.

  • PDF

An Experimental Study on the Bending Behaviour of Steel Grid Composite Deck (격자형 강합성 바닥판의 휨거동에 대한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.175-184
    • /
    • 2011
  • To take advantage of reduced on-site construction periods and minimize traffic impacts various types of steel grid composite deck have been developed since 1930's. Modular prefabricated unfilled grid decks permit a long-distance transportation and construction under unfavorable condition, for example, in mountainous regions due to its comparatively light-weighter structure than fully filled grid deck. In this study bending tests of unfilled grid decks for the deck member of various kinds of infrastructure are carried out, bending strength and behaviour of composite action are experimentally evaluated. In this bending test, design variables are considered, such as type of shear connection between steel grid and concrete slab, spacing between cross bars and thickness of concrete slab. Through test results bending strength and behaviour of composite action are evaluated, reference data for proper type of shear connection and other details of the deck, such as spacing between cross bars, are obtained.

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

Evaluation of the Bending Performance of a Modified Steel Grid Composite Deck Joint (격자형 강합성 바닥판의 수정된 이음부에 대한 휨성능 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.38-47
    • /
    • 2013
  • For the joint connection of the precast steel grid composite decks, the prefabricated joint which is composed of concrete shear key and high-tension bolts was already proposed. In this study, for the purpose of increasing the bending stiffness and bending strength of the proposed prefabricated joint section details of the proposed joint are modified, and through experimental tests the bending performance, such as stiffness and strength of a modified joint, is compared with those of the proposed joint. Test and analysis results show that the shear cracks in the concrete shear key are clearly reduced by the strengthening of the shear key using shear studs and additional rebars. According to analysis results of the moment-curvature relationship, bending stiffness of the modified joint is about 47% greater than the stiffness of the proposed joint. Furthermore, the modified joint has about 32% greater bending strength than the proposed joint. Compared to specimens without the joint the modified joint has same or slightly higher bending strength, but about 37% lower bending stiffness.

A Study of Static Behavior of FRP Bridge Deck Concerning Connection Condition (FRP바닥판의 연결조건에 따른 정적거동 분석)

  • Yong, Hwan Sun;Hwang, Yoon Koog;Kyung, Kab Su;Park, Yong Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.597-604
    • /
    • 2006
  • Fiber Reinforced Polymer (FRP) is a relatively new material in the bridge construction. With high strength to weight ratios, excellent durability, and low life-cycle costs of FRP, FRP bridge decks can offer a low dead load, reduced maintenance, and long service life. Due to the lightweight of FRP, if existing concrete decks can be replaced with the FRP decks, the load carrying capacity of superstructure can be increased without strengthening of girders. In this study, we have conducted an experiment on 7 cases of connection conditions with steel girder by using bolts considering a rational and economical method of connection and compared with the results of FEM analysis. From the experimental result, if the bolts are strong enough to resist shear force between the FRP bridge deck and the steel girder, it will be structurally secure to use the zigzag method.