• 제목/요약/키워드: 프론트 사이드 조립체

검색결과 3건 처리시간 0.019초

승용차용 프론트 사이드 조립체의 박판 두께 조정에 따른 붕괴모드 제어에 관한 역설계적 유한요소 층돌해석 (Crash FE Analysis of Front Side Assembly of Passenger Cars for Management of Collapse Shape Via Variation of Thickness with Reverse Engineering)

  • 김용우;김정호
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.106-113
    • /
    • 2008
  • The goal of crashworthiness is an optimized vehicle structure that can absorb the crash energy by controlled vehicle deformations while maintaining adequate space so that the residual crash energy can be managed by the restraint systems to minimize crash loads transfer to the vehicle occupants. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on auto-makers and size of vehicles. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of a passenger car to investigate the effect of thickness distribution of the front side assembly on the collapse shape, which is important in the aspect of controlling deformation to maintain adequate space, from the viewpoint of reverse engineering. To do this, we have performed crash FE analysis for the assembly by varying the thickness distribution of the assembly.

승용차 프론트 사이드 조립체 부품의 역할과 붕괴모드에 관한 역설계적 유한요소 충돌해석 (Crush FE Analysis of Front Side Assembly of Passenger Cars for Identifying the Roles of Major Parts Influencing on Collapse Mode with Reverse Engineering)

  • 김용우;김정호;정경신
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.33-40
    • /
    • 2007
  • Crashworthiness design is of special interest in automotive industry and in the transportation safety field to ensure the vehicle structural integrity and more importantly the occupant safety in the event of the crash. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on auto-makers and size of vehicles. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of passenger cars to identify the mechanical roles of major parts in relation to collapse modes from the viewpoint of reverse engineering. To do this, we have performed crash FE analysis for the two different assemblies of small car and heavy passenger car and have compared dynamic behaviors of the two.

승용차 프론트 사이드 조립체의 역설계적 유한요소 충돌해석 (Crash FE Analysis of Front Side Assembly for Reverse Engineering)

  • 김용우;김정호;정경신
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.89-98
    • /
    • 2007
  • Crashworthiness design is of special interest in automotive industry and in the transportation safety field to ensure the vehicle structural integrity and more importantly the occupant safety in the event of the crash. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on automakers. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of a passenger car to identify the mechanical roles of each part of the assembly and to enhance the absorbing energy from the viewpoint of reverse engineering.