• Title/Summary/Keyword: 프로펠러 형상

Search Result 83, Processing Time 0.023 seconds

A Study on the Structural Performance and the Design of Propeller Root Fillet Surfaces having nT-T/n section (nT-T/n 단면형상을 갖는 프로펠러 뿌리 필렛의 구조 성능 분석과 설계방안에 관한 연구)

  • Ruy, Won-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.372-379
    • /
    • 2015
  • The blade root fillets which have strong influences on the performance of propellers in the both structural and hydrodynamic points of view, are mechanical parts for smooth connection surface with a blade and a hub. A few related researches (Sabol, 1983; Kennedy, 1997) have noted that 3T-T/3 double radius section design would be suitable for reducing Stress Concentration Factor(SCF) and increasing Cavitation Inception Speed(CIS). In this paper, it is confirmed that this compound cross-section design has come close to the optimum solution in the shape optimization standpoint so that it could protect the propeller blade under the frequent and various loading cases. On that basis, we suggest the definite and simple fillet design methodology that has the cross-section with nT-T/n compound radius and elliptic shape which could sustain the given derivatives information as well as the offsets at the boundary and all inner region of the fillet surface. In addition, the result of design is presented in form of IGES file format in order to connect with NC machine seamlessly.

A Study on the Optimization of Discharge Grille of Outdoor Unit of Air Conditioner (에어컨 실외기 토출그릴 형상 최적화)

  • Choi, Seok-Ho;Oh, Sai-Kee;Kim, Hyun-Jong;Jin, Geun-Ho;Oh, Si-Young;Kim, Byung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.11
    • /
    • pp.726-732
    • /
    • 2011
  • The aerodynamic and aeroacoustic performance of discharge grille of outdoor unit of air-conditioner was investigated in this study. Discharge grille is one of outdoor unit's important parts to affect the flow rate and Overall Sound Pressure Level(OSPL). New type of discharge grille was suggested based on the results of numerical simulation. To simulate the flow pattern near the propeller fan, commercial flow solver FLUENT was used. Sliding mesh method was used for rotating propeller fan and initial condition for unsteady model was calculated by Multiple Reference Frame(MRF) method. To minimize the interaction noise between fan blade wake and discharge grille, new discharge grille has radial rib which is aligned with trailing edge of fan blade. And inclined radial rib was adopted for reducing flow rate drop in discharge grille. The optimization of inclined angle of radial grille was performed experimentally.

Characteristics of Pressure Distribution of Journal Bearing according to Lining Material (라이닝 재료에 따른 저널 베어링의 압력 분포 특성)

  • Shin, Sang-Hoon;Rim, Chae Whan;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.480-485
    • /
    • 2017
  • The main reason for the heat induced accidents occurring at the after stern tube journal bearing is the excessive local pressure caused by the deflection of the propulsion shaft due to the propeller loads. It is expected that the contact area could beenlarged and the local pressure reduced accordingly by using a lining material having alow Young's modulus instead of the existing white metal. The purpose of this work is to investigate the characteristics of the pressure distribution and determine the allowable pressure value in the case where bearing products made of materials having a low Young's modulus are used. In this study, the propeller loads, heat effect, and hull deflection are considered in the evaluation of the local pressure of the ship propulsion shaft. Also, the Hertzian contact condition was applied. From the analysis results in the case where a lining material with a low Young's modulus was used, it was found that a robust design could be achieved and the local pressure could be reduced effectively independent of the load conditions. It will be possible to producenew products made of materials having a low Young's modulus if the manufacturer confirms the performance specifications drawn by this study.

A Study on Flexibility Acquisition Method for VLCC Shaft System (VLCC 축계 시스템의 유연성 확보 방안에 관한 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.135-139
    • /
    • 2017
  • The main reason for heat accidents occurring at the after stern tube bearing (STB) is excessive local pressure caused by the deflection of the propulsion shaft due to propeller loads. The probability of a heat accident is increased by the low flexibility of the shaft system in very large crude oil carriers (VLCCs) as the engine power and shaft diameter increase and the distance decreases between the forward and after STBs. This study proposed shaft system with only an after STB and no forward STB for a flexibility acquisition method for a VLCC shaft system under hull deformation. A Hertzian contact condition was applied, which assumes a half-elliptical pressure distribution along the contact width for the calculation of the local squeeze pressure. The propeller loads, heat effect, and hull deflection under engine operating conditions are also considered. The results show that the required design criteria were satisfied by building a partial slope at the white metal, which is the material at the axial contact side in the after STB. This system could reduce building cost by simplification of the shaft system.

Actuator Mixer Design in Rotary-Wing Mode Based on Convex Optimization Technique for Electric VTOL UAV (컨벡스 최적화 기법 기반 전기추진 수직이착륙 무인기의 추진 시스템 고장 대처를 위한 회전익 모드 믹서 설계)

  • Jung, Yeondeuk;Choi, Hyungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.691-701
    • /
    • 2020
  • An actuator mixer design using convex optimization technique situation where the propulsion system of an electric VTOL UAV during vertical take-off and landing maneuvers is proposed. The attainable control set to analyze the impact from failure of each motor and propeller can be calculated and illustrated using the properties of the convex function. The control allocation can be defined as a convex function optimization problem to obtain an optimal solution in real time. The mixer is implemented using a convex optimization solver, and the performance of the control allocation methods is compared to the attainable control set. Finally, the proposed mixer is compared with other techniques with nonlinear sux degree-of-freedom simulation.

Conceptual Design and Development Test of an Unmanned Scaled-down Quad Tilt Prop PAV (쿼드 틸트 프롭형 PAV 무인 축소모델 개념설계 및 개발시험)

  • Byun, Young-Seop;Song, Jun-Beom;Kim, Jae-Nam;Jeong, Jin-Suk;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • This paper describes the conceptual design and development test procedure of a unmanned scaled-down personal air vehicle(PAV) with drive and flight dual mode capability. Trade studies on operational requirements led to the suggestion of a quad tilt prop platform which has nacelle tilt capability with multi rotor configuration. Motors for propeller propulsion and driving mechanism were integrated into a single nacelle, then they were implemented by nacelle tilt mechanism for conversion between the drive and the flight modes. Primary design parameters and initial specifications were confirmed through conceptual design, then functional tests were performed with the test platforms for the drive and the flight modes.

Minimization of Wave-making Resistance for "Inclined Keel" Containership ("Inclined Keel" 컨테이너선의 조파저항 최소화를 위한 선형최적화)

  • Seo, Kwang-Cheol;Atlar, Mehmet;Kim, Hee-Jung;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.97-104
    • /
    • 2009
  • Ever increasing fuel prices, almost doubled in the last three years, and global pressure to reduce their environmental impact have been enforcing commercial vessel operators and designers to re-assess current vessel designs with emphasis on their propulsion systems and operational practices. In this paper the "Inclined Keel Hull (IKH)" concept, which facilitates to use larger propeller diameter in combination with lower shaft speed rates and hence better transport efficiency, is explored for a modern 3600 TEU container vessel with the aim of fitting an 13 % larger diameter propeller (and hence resulting 20% lower rpm) to gain further power saving over the similar size basis container ship with conventional "level keel" configuration. It appears that successful application of the "inclined keel Hull" concept is a fine balance amongst the maximum gain in propulsive efficiency, minimum increase in hull resistance and satisfaction of other naval architectural and operational requirements. In order to make the concept economically more viable, this paper concentrates on the fore body design with the possible combination of increase of volume in its fore body to recover the expected volume loss in the aft body due to the space for larger propeller and its low wave-making resistance to minimize the efficiency loss using a well-established optimization software.

Prediction of Maneuverability of a Ship in the Initial Design Stage (초기설계시(初期設計時) 선박(船舶)의 조종성능(操縱性能) 추정(推定)에 관한 연구)

  • S.K. Lee;S.J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.19-26
    • /
    • 1995
  • The assessment of maneuverability of a ship is very important from the view point of safety of human beings and of pollution of ocean. And, it is quite natural that every ship yard wants to have some tools with which they can build a ship with good maneuverability. But, maneuvarability of a ship is very subtle problem, and to calculate the exact maneuvering motion, lots of captive model tests must be carried out. Futhermore, in the initial design stage we can not make the scale model, because the lines of a ship is not fixed. In this paper, some approximate method to calculate the maneuvering motion of a ship, with the principal dimensions of hull, and propeller, rudder characteristics only, is studied. And, proposed approximate method is used to calculate the turning and zig-zag maneuver of several ships. The results of those calculations and the usability of the method are discussed.

  • PDF

An Experimental Study on the Effect of Adoption of Special Rudders on Course Stability of a Ship (특수타의 채택이 침로 안정성에 미치는 영향에 관한 실험적 연구)

  • Sohn, K.H.;Kim, J.H.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.27-37
    • /
    • 1997
  • The paper deals with the effectiveness of various special rudders on course stability of a ship. We adopted five types of rudder, such as one normal rudder and four special rudders, which contain two rudders with concave and convex strips on sides respectively, one flapped rudder, and one rudder with end plates on tips. In the circulating water channel, model test was carried out for measuring lift characteristics of the rudders in open water. And various captive model tests were also carried out for measuring the experimental constants related with helm angle and steering in hull-propeller-rudder system. From the test results, the changes in manoeuvring hydrodynamic derivatives due to adoption of normal and special rudders were predicted. Then course stability performances of a ship with normal and special rudders were evaluated and discussed. As a result, it is clarified that the rudder with concave or convex strips and flapped rudder have no effect on course stability, while the rudder with end plates improves course stability with effect. The result in this study is expected to be used usefully when the course stability is in issue and has to be improved without amendment of hull design at initial design phase or after construction of a ship.

  • PDF

Effect of applied current density on the corrosion damage with galvanostatic corrosion experiment of aluminum alloy for ship (선박용 알루미늄 합금의 정전류 부식 시험에 의한 부식 손상에 미치는 인가 전류밀도의 영향)

  • Kim, Yeong-Bok;Park, Il-Cho;Lee, Jeong-Hyeong;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.106-106
    • /
    • 2018
  • 해양환경용 선박재료는 전기화학적인 부식을 발생시키는 염소이온($Cl^-$)이 다량 포함된 부식 환경에 장기간 노출되어 있어 부식에 대해 취약하다. 따라서 우수한 내식성 및 내침식성을 가진 재료를 선정하는 것은 매우 중요하다. 알루미늄 합금은 충분한 강도와 부동태 피막 형성으로 인해 내식성이 우수하여 해양환경용 선박 재료로서 널리 이용되고 있으며, 이에 따른 부식 특성에 관한 연구도 활발히 이뤄지고 있다. 그러나 선박에서는 부식에 의한 손상뿐만 아니라 전식에 의한 부식 손상도 발생할 수 있다. 특히 선미 부분은 프로펠러의 동합금과 알루미늄 합금의 이종금속 간 전위차에 의한 전식이 발생하여 선체의 다른 부위에 비해 부식이 더 심하게 진행될 수도 있다. 또한 전식은 해안 부두에 접안된 선박의 용접 시미주전류(stray current)에 의한 부식손상이 발생할 수 있으나 이에 대한 연구는 미미한 실정이다. 따라서 본 연구는 해양환경에서의 전식을 인위적으로 모사할 수 있는 부식 정전류 시험법을 이용하여 다양한 크기의 전식 손상을 유발시켰으며, 해양환경 하에서 선박재료로 주로 사용되는 알루미늄 합금인 Al5083-H321, Al5052-O, Al6061-T6에 대한 전식 특성을 비교, 분석하였다. 실험 방법으로 작동전극은 각 재료의 시험편을 $2cm{\times}2cm$ 으로 절단하여 sand paper # 2000 번까지 연마 후 아세톤과 증류수로 세척하고 건조하였으며, 제작된 시험편은 자체 제작한 홀더를 이용하여 $1cm^2$만 노출시킨 후 정전류 가속 실험을 실시하였다. 기준전극은 은/염화은(Ag/AgCl) 전극을, 대응전극은 백금(Pt) 전극을 사용하였다. 정전류 가속 조건은 $0.001mA/cm^2$, $0.1mA/cm^2$, $1mA/cm^2$, $5mA/cm^2$, $10mA/cm^2$의 전류 밀도를 천연해수에서 30분간 인가하였다. 각 재료에 대한 전식 특성은 실험 전후의 무게 감소량으로 전식의 저항 특성을 확인하였다. 그리고 3D 현미경으로 표면 손상 경향과 깊이를 측정하였으며, 주사전자현미경 (SEM)을 통해 표면 형상을 미시적으로 관찰하였다. 부식 정전류 시험 결과 모든 시편에서 $0.01mA/cm^2$에서 미세한 국부적인 부식이 일어났으며, 전류밀도가 증가할수록 표면 전반에 부식이 진행되고 성장하였다. 그리고 모든 인가 전류밀도의 조건에서 Al6061-T6가 5000계열(Al5083-H321, Al5052-O)보다 더 우수한 내식성을 나타났다.

  • PDF