• Title/Summary/Keyword: 프로펠러 디자인

Search Result 2, Processing Time 0.017 seconds

Mouthpiece Modeling of the Electronic Wind Instrument Using a Propeller and Linear Analysis for Fast Tracking Wind Velocity (빠른 바람의 세기 추적을 위한 프로펠러를 사용한 전자 관악기 취구의 선형 모델링)

  • Kwak, Jae-Hyung;Lee, Gang-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.295-301
    • /
    • 2010
  • In this paper, we propose a new mouthpiece model for the electronic wind instrument using a propeller and linear analysis for fast tracking wind velocity blown. This method is a modification of the velocity anemometer for fast tracking wind velocity by the propeller's angular velocity (speed of revolution). In the case of velocity anemometer, wind velocity is calculated using the property that wind velocity is in proportion to the propeller's angular velocity. However, wind velocity and angular velocity of the propeller are not in one-one correspondence because wind velocity takes some transitional time for the expected wind velocity to be calculated from angular velocity. To resolve this problem, we propose a method for finding the impulse response of the system which can be considered as a linear system, and for estimating the wind velocity by deconvolving the propeller's angular velocity with the impulse response. To experiment and to prove the validity of the proposed system, we designed a mouthpiece model which consists of a motor, a propeller and an encoder. The result of estimated wind velocity in this method showed that this system is about eightfold faster than the method by the conventional velocity anemometer.

Development of Internet-Based Propeller Design System (인터넷 기반 프로펠러 설계 시스템 개발)

  • 이왕수;박범진;이창섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.6
    • /
    • pp.69-79
    • /
    • 2003
  • Existing large-scale complex programs usually reside In a single computer, and the user has to be physically in contact with the computer. With the wide spread use of the internet, the need to carry out the design and analysis tasks geographically away from the main computer is increasing. In this paper existing Windows-based propeller design and analysis package is separated into the server-client modules and the protocol program is developed to implement the communication between multi-client computers and a single server computer. A new protocol packet is designed to use the Windows socket and the server/client programs control the receive/send operations using the information transmitted in the packet. Test runs show that the remote user, connected to the server computer through the internet only, can perform the required tasks.