• Title/Summary/Keyword: 프로톤 전도체

Search Result 7, Processing Time 0.023 seconds

Electrochemical Evaluation of Mixed Ionic and Electronic Conductor-Proton Conducting Oxide Composite Cathode for Protonic Ceramic Fuel Cells (혼합 이온 및 전자 전도체-프로톤 전도성 전해질 복합 공기극을 적용한 프로토닉 세라믹 연료전지의 전기화학적 성능 평가)

  • HYEONGSIK SHIN;JINWOO LEE;SIHYUK CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • The electrochemically active site of mixed ionic and electronic conductor (MIEC) as a cathode material is restricted to the triple phase boundary in protonic ceramic fuel cells (PCFCs) due to the insufficient of proton-conducting properties of MIEC. This study primarily focused on expanding the electrochemically active site by La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)-BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) composite cathode. The electrochemical properties of the composite cathode were evaluated using anode-supported PCFC single cells. In comparison to the LSCF6428 cathode, the peak power density of the LSCF6428-BZCYYb4411 composite cathode is much enhanced by the reduction in both ohmic and non-ohmic resistance, possibly due to the increased electrochemically active site.

Hydrogen Permeation of SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β Proton-Conducting Ceramic Membranes (프로톤 전도성 SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β 복합체 멤브레인의 수소투과 특성)

  • Kim, Hwan-Soo;Yu, Ji-Haeng;Shin, Min-Jae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • Proton conductors have attracted considerable attention for solid oxide fuel cell (SOFC), hydrogen pump, gas sensor, and membrane separators. Doped $SrCeO_3$ exhibits appreciable proton conductivity in hydrogen-containing atmosphere at high temperature. However commercial realization has been hampered due to the reactivity of $SrCeO_3$ with $CO_2$. The chemical stability and proton conductivity are dependent on dopant type. The purpose of this work is to investigate chemical stability of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composites in $CO_2$ and $H_2$ gases. Thermogravimetric analysis (TGA) was performed in gaseous $CO_2$ and electrical conductivity of the composites were also measured between 500 and $900^{\circ}C$ in air and $H_2$ atmosphere. $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes showed good chemical stability of in $CO_2$ atmosphere and high conductivity at hydrogen condition. The hydrogen permeation of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes was investigated as a function of volumetric content of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}$. The $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$(6:4) membrane with a thickness of 1.0 mm showed the highest hydrogen permeability with the flux reaching of 0.12 $ml/min{\cdot}cm^2$ at $800^{\circ}C$ in 100%$H_2/N_2$ as feed gas.

Structural properties of Pd-barium zirconate dense membrane synthesized by dual sputtering method (동시 증착 스퍼터링 공정에 의해 증착된 Pd-barium zirconate membrane의 구조분석)

  • Byeon, Myeong-Seop;Kang, Eun-Tae;Cho, Woo-Seok;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • Barium zirconate exhibits good thermo-chemical stability and proton conduction at high temperatures, but shows poor electron conductivity. Therefore, for high efficiency of hydrogen separation, a very thin and dense Pd-Barium zirconate membrane has to be coated on a porous substrate. A thin and dense Pd-Barium zirconate membrane was successfully synthesized on a porous substrate by means of dual sputtering method. The structural and chemical features of the $BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ membranes sputtered at $300^{\circ}C$ and $400^{\circ}C$ were investigated by X-ray diffractometry, and it was found that a well-crystallized membrane, Pm-3m space group of $BaZrO_3$, was synthesized. The surface and cross-sectional morphologies of membrane were assessed by SEM (scanning electron microscopy) and TEM(transmission electron microscopy) of the surface and of cross sections. The cross sectional observation of Pd-$BaZr_{0.85}Y_{0.15}O_{3-{\delta}}$ membrane by dual sputtering shows that the coating is quite dense with columnar structure.

Effect of Branching-agent Content on the Electrochemical Properties of Partially Fluorinated Poly(Arylene Ether Sulfone) Block Ionomer Membranes (부분불소계 Poly(Arylene Ether Sulfone) 블록이오노머막의 전기화학적 특성에 대한 분지체 함량의 효과)

  • Jeon, Seong-Hoon;Chang, Bong-Jun;Kang, Ho-Cheol;Kim, Jeong-Hoon;Joo, Hyeok-Jong
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Partially fluorinated poly(arylene ether sulfone) block ionomer membranes with different branch degree for fuel cell applications were investigated. A sulfonable monomer, a non-sulfonable monomer and a trifunctional branching agent were synthesized and the sulfonable monomer was oligomerized to obtain block structures. The oligomer was then further polymerized with the non-sulfonable monomer and the branching agent. The mole ratio of oligomer : non-sulfonable monomer was fixed at 4:6 and the content of the branching agent was varied from 0 to 2 mol% (BBC-40Bx). Post-sulfonation of BBC-40Bx was carried out using chlorosulfonic acid (CSA) (SBBC-40Bx). All the synthesized compounds were characterized by $^1H$-NMR, $^{19}F$-NMR and FT-IR. It was confirmed that the ion exchange capacity (IEC), water uptake and ion conductivity of SBBC-40Bx increased with the increment of branching agent content.

Study on Low-Temperature Solid Oxide Fuel Cells Using Y-Doped BaZrO3 (Y-doped BaZrO3을 이용한 저온형 박막 연료전지 연구)

  • Chang, Ik-Whang;Ji, Sang-Hoon;Paek, Jun-Yeol;Lee, Yoon-Ho;Park, Tae-Hyun;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.931-935
    • /
    • 2012
  • In this study, we fabricate and investigate low-temperature solid oxide fuel cells with a ceramic substrate/porous metal/ceramic/porous metal structure. To realize low-temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss. Yttrium-doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350-nm-thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1-${\mu}m$-thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200-nm-thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806 V, and the maximum power density is 11.9 mW/$cm^2$ at $350^{\circ}C$. Even though a fully dense electrolyte is deposited via PLD, a cross-sectional transmission electron microscopy (TEM) image reveals many voids and defects.