• 제목/요약/키워드: 프로젝션 적분 히스토그램

검색결과 2건 처리시간 0.016초

Alignment Marker 고속 인식 및 위치 보정 방법 (A Fast Way for Alignment Marker Detection and Position Calibration)

  • 문창배;김현수;김현용;이동원;김태훈;정해;김병만
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2016
  • 얼라인(Align) 보정은 제품 생산 전/후 빈번하게 사용되는 머신비전 기술 중 하나이다. 본 논문에서는 생산품에 각인된 마커(Marker) 또는 생산품에 존재하는 유니크한 패턴을 이용하여 생산품의 각도와 위치를 고속으로 판별하고 보정하는 방법을 제안하였다. 본 논문에서 사용한 방법은 템플릿매칭(Template Matching)의 속도를 개선한 적분 히스토그램(Integral Histogram)의 변형을 이용하여 후보들을 추출하고, 클러스터링을 적용하여 후보들을 축소하는 방법을 적용 후 마커의 각도와 위치를 판별하는 방법을 제안하였다. 실험결과, 클러스터링을 적용하기 전 보다 클러스터링을 적용 후 약 5s 719ms 개선된 것을 알 수 있었고, 각도 판별에서도 우수한 성능을 보임을 확인할 수 있었다.

적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템 (Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm)

  • 진문용;박종빈;이동석;박동선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.361-368
    • /
    • 2014
  • 차량 번호판 인식 시스템은 복잡한 교통환경의 효율적 관리를 위해 발전되어 현재 많은 곳에 사용되고 있다. 그러나 조명, 잡음, 배경변화, 번호판 훼손 등 환경변화에 큰 영향을 받기 때문에 제한된 환경에서만 동작하며, 실시간으로 사용하기 어렵다. 본 논문에서는 조명변화와 잡음에 강건하며 빠른 번호판 인식을 위한 휴리스틱 분할 알고리즘 및 이를 이용한 실시간 번호판 인식 시스템을 제안한다. 첫 번째 단계는 Haar-like 특징과 Adaboost를 이용하여 번호판을 검출한다. 이 방법은 적분영상을 이용하며 케스케이드 구조로 구성되어 있어 빠른 검출이 가능하다. 두 번째 단계에서 적응 히스토그램 평활화 방법과 노이즈를 경감시키는 바이레터럴 필터를 이용하여 번호판의 종류를 결정한 후, 번호판 종류에 따라 적분영상을 이용한 적응 이진화, 픽셀 프로젝션, 사전지식 등을 기반으로 빠르고 정확한 문자 분할을 한다. 세번째 단계에서는 HOG와 신경망 알고리즘을 이용하여 숫자를 인식하고, SVM을 이용해 한글을 인식한다. 실험결과는 번호판검출에 94.29%의 검출률, 2.94%의 오경보율을 보이며, 문자분할에서는 검출률 97.23%, 2.94%의 오경보율을 보였다. 문자인식에서 평균 인식률은 98.38%이다. 평균 운용시간은 140ms으로 빠르고 강인한 실시간 시스템을 만들 수 있다.