• Title/Summary/Keyword: 프로세스 메모리

Search Result 163, Processing Time 0.022 seconds

Classification and Analysis of Data Mining Algorithms (데이터마이닝 알고리즘의 분류 및 분석)

  • Lee, Jung-Won;Kim, Ho-Sook;Choi, Ji-Young;Kim, Hyon-Hee;Yong, Hwan-Seung;Lee, Sang-Ho;Park, Seung-Soo
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.279-300
    • /
    • 2001
  • Data mining plays an important role in knowledge discovery process and usually various existing algorithms are selected for the specific purpose of the mining. Currently, data mining techniques are actively to the statistics, business, electronic commerce, biology, and medical area and currently numerous algorithms are being researched and developed for these applications. However, in a long run, only a few algorithms, which are well-suited to specific applications with excellent performance in large database, will survive. So it is reasonable to focus our effort on those selected algorithms in the future. This paper classifies about 30 existing algorithms into 7 categories - association rule, clustering, neural network, decision tree, genetic algorithm, memory-based reasoning, and bayesian network. First of all, this work analyzes systematic hierarchy and characteristics of algorithms and we present 14 criteria for classifying the algorithms and the results based on this criteria. Finally, we propose the best algorithms among some comparable algorithms with different features and performances. The result of this paper can be used as a guideline for data mining researches as well as field applications of data mining.

  • PDF

PMS : Prefetching Strategy for Multi-level Storage System (PMS : 다단계 저장장치를 고려한 효율적인 선반입 정책)

  • Lee, Kyu-Hyung;Lee, Hyo-Jeong;Noh, Sam-Hyuk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 2009
  • The multi-level storage architecture has been widely adopted in servers and data centers. However, while prefetching has been shown as a crucial technique to exploit sequentiality in accesses common for such systems and hide the increasing relative cost of disk I/O, existing multi-level storage studies have focused mostly on cache replacement strategies. In this paper, we show that prefetching algorithms designed for single-level systems may have their limitations magnified when applied to multi-level systems. Overly conservative prefetching will not be able to effectively use the lower-level cache space, while overly aggressive prefetching will be compounded across levels and generate large amounts of wasted prefetch. We design and implement a hierarchy-aware lower-level prefetching strategy called PMS(Prefetching strategy for Multi-level Storage system) that applicable to any upper level prefetching algorithms. PMS does not require any application hints, a priori knowledge from the application or modification to the va interface. Instead, it monitors the upper-level access patterns as well as the lower-level cache status, and dynamically adjusts the aggressiveness of the lower-level prefetching activities. We evaluated the PMS through extensive simulation studies using a verified multi-level storage simulator, an accurate disk simulator, and access traces with different access patterns. Our results indicate that PMS dynamically controls aggressiveness of lower-level prefetching in reaction to multiple system and workload parameters, improving the overall system performance in all 32 test cases. Working with four well-known existing prefetching algorithms adopted in real systems, PMS obtains an improvement of up to 35% for the average request response time, with an average improvement of 16.56% over all cases.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.