• Title/Summary/Keyword: 프로브차량

Search Result 43, Processing Time 0.023 seconds

Real-Time Traffic Information Provision Using Individual Probe and Five-Minute Aggregated Data (개별차량 및 5분 집계 프로브 자료를 이용한 실시간 교통정보 제공)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.56-73
    • /
    • 2019
  • Probe-based systems have been gaining popularity in advanced traveler information systems. However, the high possibility of providing inaccurate travel-time information due to the inherent time-lag phenomenon is still an important issue to be resolved. To mitigate the time-lag problem, different prediction techniques have been applied, but the techniques are generally regarded as less effective for travel times with high variability. For this reason, current 5-min aggregated data have been commonly used for real-time travel-time provision on highways with high travel-time fluctuation. However, the 5-min aggregation interval itself can further increase the time-lags in the real-time travel-time information equivalent to 5 minutes. In this study, a new scheme that uses both individual probe and 5-min aggregated travel times is suggested to provide reliable real-time travel-time information. The scheme utilizes individual probe data under congested conditions and 5-min aggregated data under uncongested conditions, respectively. As a result of an evaluation with field data, the proposed scheme showed the best performance, with a maximum reduction in travel-time error of 18%.

A study on the imputation solution for missing speed data on UTIS by using adaptive k-NN algorithm (적응형 k-NN 기법을 이용한 UTIS 속도정보 결측값 보정처리에 관한 연구)

  • Kim, Eun-Jeong;Bae, Gwang-Soo;Ahn, Gye-Hyeong;Ki, Yong-Kul;Ahn, Yong-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.66-77
    • /
    • 2014
  • UTIS(Urban Traffic Information System) directly collects link travel time in urban area by using probe vehicles. Therefore it can estimate more accurate link travel speed compared to other traffic detection systems. However, UTIS includes some missing data caused by the lack of probe vehicles and RSEs on road network, system failures, and other factors. In this study, we suggest a new model, based on k-NN algorithm, for imputing missing data to provide more accurate travel time information. New imputation model is an adaptive k-NN which can flexibly adjust the number of nearest neighbors(NN) depending on the distribution of candidate objects. The evaluation result indicates that the new model successfully imputed missing speed data and significantly reduced the imputation error as compared with other models(ARIMA and etc). We have a plan to use the new imputation model improving traffic information service by applying UTIS Central Traffic Information Center.

A Methodology for Expanding Sample OD Based on Probe Vehicle (프로브 차량 기반 표본 OD의 전수화 기법)

  • Baek, Seung-Kirl;Jeong, So-Young;Kim, Hyun-Myung;Choi, Kee-Choo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.2
    • /
    • pp.135-145
    • /
    • 2008
  • As a fundamental input to the travel demand forecasting, OD has been always a concern in obtaining the accurate link traffic volume. Numerous methods were applied thus far without a complete success. Some existing OD estimation techniques generally extract regular samples and expand those sample into population. These methods, however, leaves some to be desired in terms of accuracy. To complement such problems, research on estimating OD using additional information such as link traffic volume as well as sample link use rate have been accomplished. In this paper, a new approach for estimating static origin-destination (OD) using probe vehicle has been proposed. More specifically, this paper tried to search an effective sample rate which varies over time and space. In a sample test network study, the traffic volume error rate of each link was set as objective function in solving the problem. As a key result the MAE (mean absolute error) between expanded OD and actual OD was identified as about 5.28%. The developed methodology could be applied with similar cases. Some limitations and future research agenda have also been discussed.

Extraction of Hazardous Freeway Sections Using GPS-Based Probe Vehicle Speed Data (GPS 프로브 차량 속도자료를 이용한 고속도로 사고 위험구간 추출기법)

  • Park, Jae-Hong;Oh, Cheol;Kim, Tae-Hyung;Joo, Shin-Hye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.73-84
    • /
    • 2010
  • This study presents a novel method to identify hazardous segments of freeway using global positioning system(GPS) based probe vehicle data. A variety of candidate contributing factors leading to higher potential of accident occurrence were extracted from the probe vehicle dataset. The research problem was defined as a classification problem, then a well-known classifier, bayesian neural network was adopted to solve the problem. A binary logistic regression technique was also used for selecting salient input variables. Test results showed that the proposed method is promising in extracting hazardous freeway sections. The outcome of this study will be effectively used for evaluating the safety of freeway sections and deriving countermeasures to prevent accidents.

Deriving Macroscopic Fundamental Diagrams Using Probe Vehicle Data Based on DSRC (DSRC 기반 프로브 자료를 이용한 거시 교통류 모형 추정 방법)

  • Shim, Jisup;Yeo, Jiho;Lee, Sujin;Jang, Kitae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.29-41
    • /
    • 2017
  • In this study, we used individual trip data to estimate a macroscopic fundamental diagram (MFD) that relates flow (or production) to density (or state) in Daegu metropolitan city. The individual trip data were generated by processing data that were collected from DSRC-based (dedicated short range communication) traffic data collection system. Using the processed individual trip data, we first examined whether the assumptions for MFD are valid, and then the relation between outflow and accumulation was estimated in our study site. As a result, we found that i) the assumptions are valid to construct MFD; and ii) the reproducible and well-defined MFDs exist in the network level.

Measurement of Travel Time Using Sequence Pattern of Vehicles (차종 시퀀스 패턴을 이용한 구간통행시간 계측)

  • Lim, Joong-Seon;Choi, Gyung-Hyun;Oh, Kyu-Sam;Park, Jong-Hun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.53-63
    • /
    • 2008
  • In this paper, we propose the regional travel time measurement algorithm using the sequence pattern matching to the type of vehicles between the origin of the region and the end of the region, that could be able to overcome the limit of conventional method such as Probe Car Method or AVI Method by License Plate Recognition. This algorithm recognizes the vehicles as a sequence group with a definite length, and measures the regional travel time by searching the sequence of the origin which is the most highly similar to the sequence of the end. According to the assumption of similarity cost function, there are proposed three types of algorithm, and it will be able to estimate the average travel time that is the most adequate to the information providing period by eliminating the abnormal value caused by inflow and outflow of vehicles. In the result of computer simulation by the length of region, the number of passing cars, the length of sequence, and the average maximum error rate are measured within 3.46%, which means that this algorithm is verified for its superior performance.

  • PDF

Analysis on Accuracy of GPS installed in Digital Tachograph of Commercial vehicles (사업용 차량의 프로브 활용 가능성 평가를 위한 디지털운행기록계 위치정보 정확도 분석)

  • Sim, HyeonJeong;Chae, Chandle;Kang, Minju;Lee, Jonghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.164-175
    • /
    • 2019
  • Installation of digital tachograph, black box, and ADAS have been enforced to commercial vehicles for preventing violent driving and accidents by the Traffic Safety Act in Korea. Nevertheless, the damage caused by road hazards has increased 1.5 times in 2016 compared to 2013. So, developing new technologies that can identify road hazard using the sensors installed in commercial vehicles are conducting by the Ministry of Land, Infrastructure and Transport. As a part of the technologies, this research analyze the error range of GPS installed in commercial vehicles that vary according to the driving speed. As a result, the average error was 9.72m at the driving speed of 100km/h, and the error was 2.1 times larger than the average error of 4.69m at the driving speed of 40km/h. The event point proper integration/separation range(m) was analyzed to be 20m with a recognition rate of 90% or more at the same point regardless of driving speed. The results of this research can be used as basic data for improving the accuracy of location-based data would be collected using commercial vehicles.