• Title/Summary/Keyword: 프로듀서 가스

Search Result 3, Processing Time 0.015 seconds

Experimental Study of Gasification Characteristics of Low-rank Liquid Fuel and Producer gas Generation in a Fluidized Bed Reactor (유동층 반응기에서 액상의 저급 연료 가스화 특성 실험 및 프로듀서 가스 생산을 위한 연구)

  • Kim, Youngdoo;Jeong, Soohwa;Jung, Jaeyong;Yang, Won;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.25-28
    • /
    • 2014
  • In this study, waste cooking oil was gasified in a fluidized bed reactor. The main objective of this study was to produce clean producer gas for power generation engine. As a result, heating value of producer gas is suitable for engine operation and tar content in producer gas was satisfied after use of activated carbon filter. Results from a lab scale experiment and a preliminary results from a pilot scale experiment will be presented.

  • PDF

Effects of Biomass Gasification by Addition of Steam and Calcined Dolomite in Bubbling Fluidized Beds (기포유동층에서 수증기 및 소성된 백운석 첨가에 의한 바이오매스 가스화의 영향)

  • Jo, WooJin;Jeong, SooHwa;Park, SungJin;Choi, YoungTai;Lee, DongHyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.783-791
    • /
    • 2015
  • A fluidized-bed reactor with an inside diameter of 0.1 m and a height of 1.2 m was used to study the effect of steam and catalyst additions to air-blown biomass gasification on the production of producer gas. The equipment consisted of a fluidized bed reactor, a fuel supply system, a cyclone, a condenser, two receivers, steam generator and gas analyzer. Silica sand with a mean particle diameter of $380{\mu}m$ was used as a bed material and calcined dolomite ($356{\mu}m$), which is effective in tar reduction and producer gas purification, was used as the catalyst. Both of Korea wood pellet (KWP) and a pellet form of EFB (empty fruit bunch) which is the byproduct of Southeast Asia palm oil extraction were examined as biomass feeds. In all the experiments, the feeding rates were 50 g/min for EFB and 38 g/min for KWP, respectively at the reaction temperature of $800^{\circ}C$ and an ER (equivalence ratio) of 0.25. The mixing ratio (0~100 wt%) of catalyst was applied to the bed material. Air or an air-steam mixture was used as the injection gas. The SBR (steam to biomass ratio) was 0.3. The composition, tar content, and lower heating value of the generated producer gas were measured. The addition of calcined dolomite decreased tar content in the producer gas with maximum reduction of 67.3 wt%. The addition of calcined dolomite in the air gasification reduced lower heating value of the producer gas. However The addition of calcined dolomite in the air-steam gasification slightly increased its lower heating value.

Gasification of Woody Waste in a Two-Stage Fluidized Bed Varying the Upper-reactor Temperature and Equivalence Ratio (상부온도(上部溫度)와 공기비(空氣比) 변화(變化)에 따른 폐목재(廢木材)의 이단(二段) 유동층(流動層)가스화(化))

  • Mun, Tae-Young;Kim, Jin-O;Kim, Jin-Won;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2010
  • During the biomass gasification, tar generation is typically accompanied, which causes many problems, such as pipe plugging and equipment fouling. In the experiments, activated carbon was applied to the upper reactor of the two-stage gasifier in order to remove the tar generated during gasification. In addition, the effects of the upper-reactor temperature and equivalence ratio on the producer gas characteristics (composition, tar content and lower heating value) were investigated. To investigate the effect of the upper reactor-temperature, experiments were performed at 743, 793, $838^{\circ}C$, respectively. To examine the influence of the equivalence ratio, a comparison experiment was carried out at a equivalence ratio of 0.17. In all experiments, tar contents in the producer gases were below $2mg/Nm^3$. The maximum LHV of the producer gas was above $10MJ/Nm^3$, which is much higher than the typical LHV($3\sim6MJ/Nm^3$) in the air gasification of biomass.