프레임넷 (FrameNet) 프로젝트는 버클리에서 1997년에 처음 제안했으며, 최근에는 다양한 언어적 특징을 반영하여 여러 국가에서 사용되고 있다. 하지만 문장의 프레임을 분석하는 것은 자연언어처리 전문가들이 많은 시간을 들여야 한다. 이 때문에, 한국어 프레임넷을 처음 만들 때는 충분한 훈련을 받은 번역가들이 영어 프레임넷의 문장들과 그 주석 정보들을 직접 번역하는 방법을 사용했다. 결과적으로 상대적으로 적은 비용이 들지만, 여전히 한 문장에 여러 번 등장하는 프레임 정보를 모두 번역하고 에러를 분석해야 했기에 많은 노력이 들어갔다. 본 연구에서는 일본어와 한국어의 언어적 유사성을 사용하여 비교적 적은 비용으로 한국어 프레임넷을 확장하는 방법을 제시한다. 또한 프레임넷에 친숙하지 않은 사용자가 더욱 쉽게 프레임 정보를 활용할 수 있도록 PubAnnotation 기술을 도입하고 "조사"라는 특성을 고려한 Valence pattern 분류를 통해 한국어 공개 프레임넷 사이트를 개선하였다.
프레임넷 (FrameNet) 프로젝트는 버클리에서 1997년에 처음 제안했으며, 최근에는 다양한 언어적 특징을 반영하여 여러 국가에서 사용되고 있다. 하지만 문장의 프레임을 분석하는 것은 자연언어처리 전문가들이 많은 시간을 들여야 한다. 이 때문에, 한국어 프레임넷을 처음 만들 때는 충분한 훈련을 받은 번역가들이 영어 프레임넷의 문장들과 그 주석 정보들을 직접 번역하는 방법을 사용했다. 결과적으로 상대적으로 적은 비용이 들지만, 여전히 한 문장에 여러 번 등장하는 프레임 정보를 모두 번역하고 에러를 분석해야 했기에 많은 노력이 들어갔다. 본 연구에서는 일본어와 한국어의 언어적 유사성을 사용하여 비교적 적은 비용으로 한국어 프레임넷을 확장하는 방법을 제시한다. 또한 프레임넷에 친숙하지 않은 사용자가 더욱 쉽게 프레임 정보를 활용할 수 있도록 PubAnnotation 기술을 도입하고 "조사"라는 특성을 고려한 Valence pattern 분류를 통해 한국어 공개 프레임넷 사이트를 개선하였다.
본 논문에서는 한국어 프레임넷 분석기를 구축하기 위하여 한국어 프레임넷 데이터를 가공하여 공개하고, 한국어 프레임 분류 및 논항의 의미역 분류 문제를 해결하기 위한 방법을 제안한다. 프레임넷은 단어 단위가 아닌 단어들의 범위로 구성된 범위에 대해 어노테이션된 코퍼스라는 점에 착안하여, 어휘 및 논항의 내부 의미 정보와 외부 의미 정보, 그리고 프레임과 각 의미역들의 임베딩을 학습한 중첩 분할된 양방향 LSTM 모델을 사용하였다. 이를 통해 한국어 프레임 분류에서 72.48%, 논항의 의미역 분류에서 84.08%의 성능을 보였다. 또한 본 연구를 통해 한국어 프레임넷 데이터의 개선 방안을 논의한다.
이 논문은 가장 잘 알려진 어휘부중 하나인 워드넷의 활용 범위 확장을 위해 워드넷 신셋에 "사건구조 프레임(Event Structure Frame)"을 주석하는 연구에 관한 것이다. 워드넷을 비롯하여 현재 사용되고 있는 어휘부는 풍부한 어휘의미정보가 구조화되어 있지만, 사건구조에 관한 정보를 포함하고 있지는 않다. 이 연구의 가장 큰 기여는 워드넷에 사건구조 프레임을 추가함으로써 워드넷과의 연결만으로 핵심적인 어휘의미정보를 모두 추출할 수 있도록 해준다는 점이다. 예를 들어 텍스트 추론, 자연어처리, 멀티 모달 태스크 등은 어휘의미정보와 배경지식(상식)을 이용하여 태스크를 수행한다. 워드넷에 대한 사건구조 주석은 자동사건구조 주석 시스템인 GESL을 이용하여 워드넷 신셋에 있는 예문에 먼저 자동 주석을 하고, 오류에 대해 수동 수정을 하는 반자동 방식이다. 사전 정의된 23개의 사건구조 프레임에 따라 예문에 출현하는 타겟 동사를 분류하고, 해당 프레임과 매핑한다. 현재 이 연구는 시작 단계이며, 이 논문에서는 빈도 순위가 가장 높은 100개의 동사와 각 사건구조 프레임별 대표 동사를 포함하여 총 106개의 동사 레마에 대해 실험을 진행하였다. 그 동사들에 대한 전체 워드넷 신셋의 수는 1337개이다. 예문이 없어서 GESL이 적용될 수 없는 신셋을 제외하면 1112개 신셋이다. 이 신셋들에 대해 GESL을 적용한 결과 F-Measure는 73.5%이다. 향후 연구에서는 워드넷-사건구조 링크를 계속 업데이트하면서 딥러닝을 이용해 GESL 성능을 향상 할 수 있는 방법을 모색할 것이다.
비구조 텍스트로부터 지식을 추출하여 온톨로지 기반 지식베이스를 구축하는 연구가 최근 국내외로 다양하게 진행되고 있다. 이러한 목적을 달성하기 위해서는 자연어 텍스트에서 나타난 지식요소들의 다양한 속성들을 표현할 수 있는 온톨로지를 필요로 한다. 디비피디아 역시 위키피디아의 지식들을 표현하기 위하여 디비피디아 온톨로지를 사용한다. 그러나 디비피디아 온톨로지는 위키피디아의 인포박스에 기반한 온톨로지로서, 요약된 정보를 설명하기에는 적합할 수 있으나 자연어 텍스트로 표현된 다양한 지식표현을 충분히 커버하는 것은 보증되지 않는다. 본 논문에서는 자연어 텍스트로 쓰여진 지식을 디비피디아 온톨로지가 충분히 표현할 수 있는지를 검토하고, 또한 그 불완전성을 프레임넷이 어느정도까지 보완할 수 있는지를 살핀다. 이를 통해 한국어 텍스트로부터 지식베이스를 자동구축하는 온톨로지 인스턴스 자동생성 연구의 방향으로서 디비피디아 온톨로지와 프레임넷의 효용성을 전망한다.
이벤트 추출은 텍스트에서 구조화된 이벤트를 분석하는 것이다. 본 논문은 대화문에서 발생하는 다양한 종류의 이벤트를 다루기 위해 이벤트 스키마를 프레임넷으로 정한다. 대화문에서의 이벤트 논항은 이벤트가 발생하는 문장 뿐만 아니라 다른 문장 또는 대화에 참여하는 발화자에서 발생할 수 있다. 대화문 주석 데이터의 부재로 대화문에서의 프레임 파싱 연구는 진행되지 않았다. 본 논문이 제안하는 모델은 대화문에서의 이벤트 논항 구간이 주어졌을 때, 논항 구간의 역할을 식별하는 모델이다. 해당 모델은 이벤트를 유발한 어휘, 논항 구간, 논항 역할 간의 관계를 학습한다. 대화문 주석 데이터의 부족을 극복하기 위해 문어체 주석 데이터인 한국어 프레임넷을 활용하여 전이학습을 진행한다. 이를 통해 정확도 51.21%를 달성한다.
일반적인 IEEE 802.15.3 WPAN에서는 피코넷을 관리하던 PicoNet Coordinator(PNC)가 비정상적으로 망을 떠나게 되거나, 두 개 이상의 피코넷들이 인접해 있을 때 각 PNC로부터 주기적으로 송신되는 비컨 프레임들 사이에 충돌이 발생하게 되면, 각 피코넷에 속한 단말들이 해당 비컨 프레임을 수신하지 못하게 되면서 피코렛의 동작이 와해되는 심각한 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위하여, 다음과 같은 두 가지의 방안을 제안하였다. 첫 번째는 PNC의 비정상적인 이탈에 대비하기 위해서 각 단말들이 능동적으로 프로브 프레임을 전송하여 해당 PNC의 동작여부를 확인하도록 함으로써 신속히 새로운 PNC를 선출하는 능동적 PNC 핸드오버 방법인 Active Seamless Coordinator Switching(ASCS) 방식이다. 두 번째는 밀집된 피코넷들의 각 PNC가 주기적으로 전송하는 비컨 프레임간의 충돌을 방지하기 위한 것으로써, 각 PNC들이 해당 피코넷의 수퍼프레임 정보를 수납한 Heart Beat(HB) 프레임을 비 주기적으로 전송하여 PNC의 비컨 프레임 송신시점을 조정하도록 함으로써 비컨 프레임간의 충돌을 방지하는 PNC Heart Beat 기반의 비컨 프레임 정렬(PNC HB based Beacon Alignment) 방식이다. 제안된 두 가지 방안에 대하여 모의실험을 통해 성능을 평가한 결과, 각 방식들은 유사한 기존 방식에 비해 피코넷의 와해기간을 단축시킬 수 있어, 각 단말이 겪는 프레임당 평균 지연시간과 수퍼프레임 별 전송효율이 향상됨을 확인하였다. 특히, 제안된 방식은 WPAN규격에서 허용되는 프레임들을 활용할 수 있으므로, 구현성이 높은 장점이 있다.
IEEE 802.15.3 High-rate WPAN(Wireless Personal Area Network)은 무선으로 약 l0m이내의 근거리 디바이스들을 연결하여 고속 통신을 지원하기 위해 개발되었다. 피코넷(piconet)은 하나의 PNC (Piconet Coordinator)와 하나 이상의 디바이스(device)로 구성된다. 부모 피코넷(parent piconet)에 합류(association)한 디바이스는 PNC가 되어 자식 피코넷(child piconet)을 형성할 수 있다. 부모 피코넷과 자식 피코넷들로 구성된 메쉬(mesh) 네트워크에서는 멀티-홉(multi-hop) 통신이 가능하게 된다. 본 논문에서 메쉬 네트워크의 최대 레벨과 가용 슈퍼프레임 크기를 분석하고, 멀티-홉 전송을 위한 디바이스 탐색시간을 랜덤 메쉬 네트워크 환경에서 분석한다. 일정한 영역에서 디바이스 수가 증가함에 따라 형성되는 메쉬 네트워크의 레벨은 최대 약 1.9까지 가능하며, 가용 슈퍼프레임 크기는 약 52ms이고, 디바이스 탐색시간은 약 155ms 소요됨을 확인할 수 있다.
Koinonia는 고속 무선 개인 네트워크(Wireless Personal Atra Network: WPAN) 기술로 무선으로 근거리 디바이스들을 연결하여 통신을 하기위해 개발되었다. 피코넷(piconet)은 하나의 마스터(master)와 하나 이상의 슬레이브(slave)로 구성되며, 다중 피코넷(multi-piconet)은 처음 구성된 피코넷(최상위피코넷: parent piconet)과 이를 기반으로 형성된 하위 피코넷(child piconet)으로 구성된다. 이와 같은 하위 피코넷은 상위 피코넷에서 슬레이브 역할과 하위 피코넷에서 마스터 역할을 하는 하위 마스터(child master)와 슬레이브로 구성된다. 본 논문에서는 이와 같은 구조로 다중 피코넷이 형성되고, 이에 따라 할당되어지는 CTA(Channel Time Allocation)의 최대 용량(maximum capacity)을 계층 수, 하위 피코넷의 슬레이브 수 등에 따라 비교, 분석하였다. 하나의 슈퍼프레임이 최대로 이용할 수 있는 용량(capacity)이 65.535ms로 일정하기 때문에 계층에 따라 형성되는 하위 피코넷의 수와 피코넷에 속한 슬레이브 수가 증가함에 따라 이용할 수 있는 용량이 감소하는데, 이에 대한 일정한 용량 감소를 정량적으로 제시하였다. 또한 다중 피코넷의 하위 피코넷의 수가 증가함에 따라 이용 할 수 있는 용량의 감소를 분석하였다.
본 논문에서서는 질의응답 시스템을 위한 자연언어 질의 이해를 위하여 프레임 시멘틱스 기반 의미 분석방식을 제안한다. 지식베이스에 의존적인 질의 이해는 지식베이스의 불완전성에 의해 충분한 정보를 분석하지 못한다는 점에 착안하여, 질의의 술부-논항구조 및 그 의미에 대한 분석을 수행하여 자연언어 질의에서 나타난 정보들을 충분히 파악하고자 하였다. 본 시스템은 자연언어 질의를 입력으로 받아 이를 프레임 시멘틱스의 구조에 기반하여 기계가 읽을 수 있는 임의의 RDF 표현방식의 모형 쿼리를 생성한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.