• Title/Summary/Keyword: 프레임구조물

Search Result 248, Processing Time 0.024 seconds

Co-evolutionary Structural Design Framework: Min(Volume Minimization)-Max(Critical Load) MOD Problem of Topology Design under Uncertainty (구조-하중 설계를 고려한 공진화 구조 설계시스템)

  • 양영순;유원선;김봉재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.335-347
    • /
    • 2003
  • 본 논문에서는 설계 하중에 지배되는 구조물에 있어서, 입력 파라미터들의 불확실성을 표준편차와 패턴의 변동, 두 차원에서 접근, 처리할 수 있는 방안을 제시하기 위해서 구조물에 입력으로 작용하는 하중 패턴의 결정과 구조물의 형상의 진화를 동시에 고려할 수 있는 Co-Evolutionary Structural Design framework라 명명한 새로운 구조 설계 방식을 개발하였다. 공학자의 직관과 경험 의존적인 하중을 대상으로 최적화된 구조물은, 성능에 완벽한 안전을 보장해 줄 수 없으며, 이에 관한 문제를 해결하기 위해서 주어진 상황 속에서 다양한 하중이 작용하더라도 안전할 수 있는 구조물의 설계 방식에 관해서 설명한다. 본 프레임워크는 연성을 가지는 두 Disciplinary Modules, 즉 구조 형상설계와 하중설계로 이루어지며 하중에 관한 DB로 연결되어 순차적인 MDO 설계과정을 거치게 된다. 두 Discipline은 설계과정을 거치면서 상호 견제의 틀 속에서 진화하며 기존 방식과 달리 극한 하중 패턴을 스스로 찾아서 설계 반영하는 특징을 가진다. 본 접근 방식의 유용성을 평가하기 위해서 10-bar truss 구조물과 Jacket-Type 구조물로 테스트해 보았다.

  • PDF

Seismic Performance Evaluation of Recentering Braced Frame Structures Using Superelastic Shape Memory Alloys - Nonlinear Dynamic Analysis (초탄성 형상기억합금을 활용한 자동복원 가새 프레임 구조물의 내진성능 평가 - 비선형 동적해석)

  • Ban, Woo-Hyun;Hu, Jong-Wan;Ju, Young-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2020
  • Korea was recognized as a relatively safe area for earthquake. However, due to considerable damage to facilities caused by the earthquake in Gyeongju and Pohang, interest in the maintenance and repair of structures is increasing. So interest in vibration damping technology applicable to existing structures is also increasing. However, vibration damping technology has a problem in that its usability is reduced due to damage of the damping device when a strong earthquake occurs. Recently, in order to solve such a problem, study is being conducted to apply a superelastic shape memory alloys (SSMA) capable of recentering bracing. Therefore, in this study, nonlinear dynamic analysis is performed to evaluate the seismic performance of the buckling-restrained braced frame (BRBF) applied SSMA to bracing.

Optimal Design of Thick Composite Wing Structure using Laminate Sequence Database (적층 시퀀스 데이터베이스를 이용한 복합재 날개 구조물의 최적화 설계)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • This paper presents the optimum design methodology for composite wing structure which automatically calculates the safety margin using optimization framework integrating failure modes. Particularly, its framework is possible to optimize sizing procedure to prevent failure mode which has the greatest effect on reducing the sizing time of composite structure. The main failure mode was set as the first ply failure, buckling failure mode, and bolted joint stress field, and the margin was calculated to minimize the weight. The design variable is a laminate sequence database and the responses are strain, buckling, bolted joint stress field. The objective function is the mass of the wing structure. The results of buckling analysis were compared using the finite element model to verify the robustness and reliability of Composite Optimizer.

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

Efficiency Analysis of Spiral Structured Twist Screen (식품분말 진동선별기 개선을 위한 구조물 효율 분석)

  • Park, In-soon;Na, En-soo;Jang, Dong-soon;Paek, Young-soo
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.85-91
    • /
    • 2010
  • In the food process, twist screen is widely used to divide particles on the basis of size. As screen equipped in the twist screen perfoms an important part in the particle size distribution mechanism, the contact area of screen and particles, retention time of particles on the screen, mesh and string thickness of screen and the flow pattern of particles on the screen are major points of the separation efficiency. To improve the separation efficiency, increase the retention time and control the flow pattern of particles, screen frame dam and spiral blockage are installed on the sieve of twist screen ${\emptyset}$ 1200 and ${\emptyset}$ 1500. Twist screen ${\emptyset}$ 1500 with frame dam treated similar separation capacity, 37% higher separation ratio and less non-separated particles of product output 1 than general twist screen. Twist screens with frame dam and spiral blockage showed less treatment capacity, three times higher division ratio and entire separation than general twist screen.

Automated Seismic Design Method for Reinforced Concrete Structures (철근 콘트리트 구조물의 전산에 의한 내진설계법)

  • 정영수;전준태;김세열
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.3
    • /
    • pp.111-119
    • /
    • 1991
  • Most of the conventional aseismic design methods for reinforced concrete structures, based on the strong¬column weak-beam design concept, do not necessarily the state of damage distribution over the entire frame. This paper introduces a seismic damage-controlled design method for RC frames which aim at individual member damage indices. Three design parameters, namely the longitudinal steel ratio, the confinement steel ratio and the frame member depth, were studied for their influence on the frame response to an earthquake. The usefulness of this design method will be demonstrated with a three-bay four-story building frame so that, on the one hand, the method will reduce the damage as measured by the global damage index under the same earthquake and, on the other hand, will lead to a larger capacity enabling stronger earthquakes to be accom¬odated .

Analysis of Vibration Characteristics of a Full Vehicle Model Using Substructure Synthesis Method (부분구조합성법을 이용한 전차량 모델의 진동 특성 분석)

  • Kim, Bum-Suk;Kim, Bong-Soo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.519-525
    • /
    • 2010
  • The finite element (FE) method is generally used to model and simulate the physical behavior of large structures, such as passenger vehicles or aircraft. However, FE analysis involves a very large computation time and cost for developing the analysis model. Therefore, the vibration characteristics of large structural systems are often analyzed using the component mode synthesis (CMS) method, which is one of the substructure synthesis methods. In this study, the vibration characteristics of passenger vehicles are analyzed by using the substructure synthesis method. A passenger vehicle model, which includes a vehicle body, suspension systems, and a sub-frame, is presented. The physical components of the vehicle system are modeled as equivalent substructures using the Craig-Bampton method of CMS. The vibration characteristics, such as the natural frequencies and mode shapes and frequency response, of the vehicle system are determined. The effects of variations in some design parameters on the vibration characteristics of the full vehicle model are also investigated.