• Title/Summary/Keyword: 프런트 샤시 모듈

Search Result 4, Processing Time 0.019 seconds

노말 벡터를 고려한 자동차 서브프레임의 해석 알고리즘 구현

  • 이광일;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.274-274
    • /
    • 2004
  • 조향성능은 완성된 자동차를 평가하는 아주 중요한 요소이며, 운전자에게 직접적인 영향을 가지는 까닭으로 우선적으로 해결되어야 할 문제이다. 자동차의 조향성능과 관련된 자동차 요소로는 프런트 샤시 모듈이 있으며, 프런트 샤시 모듈의 자세는 구성 요소인 서브프레임의 조립자세에 의하여 결정된다. 서브프레임은 4개의 원통형 지지부로 이루어져 있으며, 차체와의 조립시 지지부에 물리적 접촉이 발생한다. 즉 공간상에서 서브프레임의 자세는 지지부의 조립위치에 의하여 결정이 되며, 서브프레임의 자세를 결정하기 위해서는 지지부에 대한 적절한 해석이 필요하다.(중략)

  • PDF

Development of the Machine Vision System for Inspection the Front-Chassis Module of an Automobile (자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발)

  • 이동목;이광일;양승한
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.84-90
    • /
    • 2004
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influence on driver directly and hence it must be solved on the preferential basis. In the present research, an automated vision system has been developed to inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance of front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

Dimensional Analysis for the Front Chassis Module in the Auto Industry (자동차 프런트 샤시 모듈의 좌표 해석)

  • 이동목;양승한
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.50-56
    • /
    • 2004
  • The directional ability of an automobile has an influence on driver directly, and hence it must be given most priority. Alignment factors of automobile such as the camber, caster and toe directly affect the directional ability of a vehicle. The above mentioned factors are determined by the pose of interlinks in the assembly of an automobile front chassis module. Measuring the position of center point of ball joints in the front lower arm is very difficult. A method to determine this position is suggested in this paper. Pose estimation for front chassis module and dimensional evaluation to find the rotational characteristics of front lower arm were developed based on fundamental geometric techniques. To interpret the inspection data obtained for front chassis module, 3-D best fit method is needed. The best fit method determines the relationship between the nominal design coordinate system and the corresponding feature coordinate system. The least squares method based on singular value decomposition is used in this paper.

The development of the machine vision system to inspect the front-chassis module of an automobile (자동차 프런트 샤시 모듈 측정을 위한 머신 비전 시스템 개발)

  • 이동목;이광일;양승한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.245-250
    • /
    • 2003
  • Today, automobile world market is highly competitive. In order to strengthen the competitiveness, quality of automobile is recognized as important and efforts are being made to improve the quality of manufactured components. The directional ability of automobile has influenced on driver directly and hence it must be solved on the preferential basis. In the present research an automated vision system has been developed th inspect the front chassis module. To interpret the inspection data obtained for front chassis module, new interpreting algorithm have been developed. Previously the control of tolerance front chassis module was done manually. With the help of the new algorithm developed, the dimension is calculated automatically to check whether the front chassis module is within the tolerance limit or not.

  • PDF