• Title/Summary/Keyword: 퓨삿 학습

Search Result 3, Processing Time 0.016 seconds

Recent advances in few-shot learning for image domain: a survey (이미지 분석을 위한 퓨샷 학습의 최신 연구동향)

  • Ho-Sik Seok
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.537-547
    • /
    • 2023
  • In many domains, lack of data inhibits adoption of advanced machine learning models. Recently, Few-Shot Learning (FSL) has been actively studied to tackle this problem. Utilizing prior knowledge obtained through observations on related domains, FSL achieved significant performance with only a few samples. In this paper, we present a survey on FSL in terms of data augmentation, embedding and metric learning, and meta-learning. In addition to interesting researches, we also introduce major benchmark datasets. FSL is widely adopted in various domains, but we focus on image analysis in this paper.

Generating Label Word Set based on Maximal Marginal Relevance for Few-shot Name Entity Recognition (퓨샷 개체명 인식을 위한 Maximal Marginal Relevance 기반의 라벨 단어 집합 생성)

  • HyoRim Choi;Hyunsun Hwang;Changki Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.664-671
    • /
    • 2023
  • 최근 다양한 거대 언어모델(Large Language Model)들이 개발되면서 프롬프트 엔지니어링의 대한 다양한 연구가 진행되고 있다. 본 논문에서는 퓨삿 학습 환경에서 개체명 인식의 성능을 높이기 위해서 제안된 템플릿이 필요 없는 프롬프트 튜닝(Template-free Prompt Tuning) 방법을 이용하고, 이 방법에서 사용된 라벨 단어 집합 생성 방법에 Maximal Marginal Relevance 알고리즘을 적용하여 해당 개체명에 대해 보다 다양하고 구체적인 라벨 단어 집합을 생성하도록 개선하였다. 실험 결과, 'LOC' 타입을 제외한 나머지 개체명 타입에서 'PER' 타입은 0.60%p, 'ORG' 타입은 4.98%p, 'MISC' 타입은 1.38%p 성능이 향상되었고, 전체 개체명 인식 성능은 1.26%p 향상되었다. 이를 통해 본 논문에서 제안한 라벨 단어 집합 생성 기법이 개체명 인식 성능 향상에 도움이 됨을 보였다.

  • PDF

TAGS: Text Augmentation with Generation and Selection (생성-선정을 통한 텍스트 증강 프레임워크)

  • Kim Kyung Min;Dong Hwan Kim;Seongung Jo;Heung-Seon Oh;Myeong-Ha Hwang
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.10
    • /
    • pp.455-460
    • /
    • 2023
  • Text augmentation is a methodology that creates new augmented texts by transforming or generating original texts for the purpose of improving the performance of NLP models. However existing text augmentation techniques have limitations such as lack of expressive diversity semantic distortion and limited number of augmented texts. Recently text augmentation using large language models and few-shot learning can overcome these limitations but there is also a risk of noise generation due to incorrect generation. In this paper, we propose a text augmentation method called TAGS that generates multiple candidate texts and selects the appropriate text as the augmented text. TAGS generates various expressions using few-shot learning while effectively selecting suitable data even with a small amount of original text by using contrastive learning and similarity comparison. We applied this method to task-oriented chatbot data and achieved more than sixty times quantitative improvement. We also analyzed the generated texts to confirm that they produced semantically and expressively diverse texts compared to the original texts. Moreover, we trained and evaluated a classification model using the augmented texts and showed that it improved the performance by more than 0.1915, confirming that it helps to improve the actual model performance.