• Title/Summary/Keyword: 풍 하중

Search Result 399, Processing Time 0.024 seconds

컨테이너 크레인용 간접부착식 로드셀에서 하중과 치수사이의 관계

  • Lee, Mun-Jae;Han, Dong-Seop;Lee, Seong-Uk;Sim, Jae-Jun;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.223-225
    • /
    • 2007
  • 컨테이너 크레인은 대형구조물로써 차폐물이 거의 없는 항만에 설치되므로 풍하중에 의한 영향이 매우 크다. 또한 초대형 컨테이너선의 등장과 대형선사의 등장과 함께 항만하역장비도 대형화, 고속화, 자동화됨으로써 컨테이너 크레인에 작용되는 풍하중의 영향이 더욱 증가하고 있다. 이로 인하여 컨테이너 크레인은 강풍에 의한 재난사고 발생위험이 항상 존재한다. 이러한 사고를 예방하기 위한 기상 및 하중 통합 모니터링 시스템 장치의 개발이 필요하며, 이러한 장치를 개발하게 되면, 국내외 기존 항만에 사용되고 있는 하역장비에 바로 설치할 수 있으며, 차후 개발되고 있는 자동화된 하역장비에도 적용이 가능함에 따라 관련 산업의 발전에 크게 기여할 수 있을 것이다. 본 논문에서는 이러한 하중 통합 모니터링 시스템의 가장 기본이 되는 컨테이너 크레인의 각 레그(Leg)부분에 부착되는 간접부착식 로드셀의 하중과 치수사이의 관계에 대한 연구를 제시하고자 한다.

  • PDF

Design Optimization of a RC Building Structure for Minimizing Material Cost (재료비 최소화를 위한 RC 빌딩 구조물의 최적설계)

  • Ahn, Hee-Jae;Park, Chang-Hyun;Choi, Dong-Hoon;Jung, Cheul-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.568-573
    • /
    • 2010
  • 본 논문에서는 압축하중 및 풍하중, 지진하중을 받는 RC (Reinforced Concrete) 빌딩 시공에 필요한 부재의 재료비를 최소화하기 위해 부재의 부피를 최소화하는 최적설계를 수행한다. 최적설계 수행을 위해 상용 PIDO (Process Integration and Design Optimization) 툴인 PIAnO (Process Integration, Automation and Optimization)에서 제공하는 다양한 설계기법들을 이용한다. 먼저 실험계획법을 사용하여 실험계획을 세우고, 실험점에 따라 범용 구조해석 프로그램인 MIDAS Gen을 사용하여 구조해석을 수행한다. 그리고 해석결과를 바탕으로 각 응답에 대한 근사모델을 생성한 후 근사모델과 최적화기법을 이용하여 최적설계를 수행하고, 제한조건을 만족하면서 부재의 부피를 최소화함으로써 제안된 설계방법의 유효성을 보인다.

  • PDF

A Study for Aerodynamic Drag Reduction on Variable Message Sign using Flow Analysis (유동해석 기반 도로전광표지 공기저항 저감 구조 연구)

  • Lim, Se-Mi;Song, Dae-Young;Park, Kyeung-U;Park, Jun-Seok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.140-146
    • /
    • 2011
  • As the demand of Variable Message Sign(VMS) has become pervasive in fulfilling the ITS policy, the costs of maintaining the Variable Message Sign operation have also increased. This paper proposes the U-curved figure, the C-curved figure and the ventilated figure type for aerodynamic drag reduction on Variable Message Sign and shows the analysis of aerodynamic drag effects using Flow Analysis. As a results of the flow analysis for right-angled, 45 degrees from side to side and 45 degrees from up or down, the C-curved figure and the ventilated figure type show about 30% aerodynamic drag reduction in all direction. And the U-curved figure type shows vivid aerodynamic drag reduction for right-angled and 45 degree from side to side, but trivial aerodynamic drag reduction for 45 degree from up or down. It is possible to reduce not only the damage on Variable Message Sign due to typhoon because of the aerodynamic drag reduction, but also installation constraints because of lighter Variable Message Sign support structure by appling the proposed structure and analysis in this paper.

Inelastic Dynamic Analysis of Structure Subjected to Across-Wind Load (풍직각방향 풍하중이 작용하는 구조물의 비탄성 동적 해석)

  • Ju-Won Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.185-192
    • /
    • 2023
  • In this study, fluctuating wind velocity for time history analysis is simulated by a single variate, single-dimensional random process using the KBC2022 spectrum about across-wind direction. This study analyzed and obtained the inelastic dynamic response for structures modeled as a single-degree-of-freedom system. It is assumed that the wind response is excellent in the primary mode, the change in vibration owing to plasticization is minor, along-wind vibration and across-wind vibration are independent, and the effect of torsional vibration is small. The numerical results, obtained by the Newmark-𝛽 method, shows the time-history responses and trends of maximum displacements. As a result of analyzing the inelastic dynamic response of the structure with the second stiffness ratio(𝛼) and yield displacement ratio (𝛽) as variables, it is identified that as the yield displacement ratio (𝛽) increases when the second stiffness ratio is constant, the maximum displacement ratio decreases, then reaches a minimum value, and then increases. When the stiffness ratio is greater than 0.5, there is a yield point ratio at which the maximum displacement ratio is less than 1, indicating that the maximum deformation is reduced compared to the elastically designed building even if the inelastic behavior is permitted in the inelastic wind design.

Application of LRBs for Reduction of Wind-Induced Responses of Coupled Shear Wall Structures (전단벽 구조물의 풍응답 저감을 위한 LRB의 적용)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Kim, Min-Gyun;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • In general, shear walls are employed as lateral resistance system. Most of shear wall structures require openings in shear walls and thus shear walls are linked by floor slabs or coupling beams resulting in the coupled shear wall structures. In this study, an LRB (lead rubber bearing) was introduced in the middle of the coupling beam of the coupled shear wall structures and the wind-induced response reduction effect of this system was investigated. In order to evaluate the control performance of the proposed method, 20- and 30-story building structures were used as example structures and boundary nonlinear time history analyses have been performed using artificial wind excitation. Japanese vibration evaluation criteria was employed to evaluate whether the proposed system could improve the serviceability of the tall coupled shear wall structures under wind excitation. Based on analytical results, it has been shown that the proposed method that connects shear walls with LRBs can improve the wind-induced response control effect.

Estimate of the Fluctuating Pressure Distribution of Tall Building under Hazard Fluctuating Wind Load (재난변동풍하중을 받는 고층건물의 변동풍압분포의 평가)

  • Hwang, Jin Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, used by the boundary layer wind tunnel test, have conducted a series of wind tunnel experiments, i.e. test the mean velocity profile regarding the surface roughness, turbulence intensity and power spectrum measured by augmentation device. After that, to provide data relevant for the preliminary design step of tall building hazard fluctuating wind loads may be obtained fluctuating pressure coefficients, fluctuating pressure spectrum, autocorrelation coefficients by the boundary layer wind tunnel test. From the results of experiments, this study can be obtained conclusions as follows. 1. We know the fact that the mean velocity profile and the turbulence intensity are well fitted natural wind flow in the boundary layer wind tunnel. 2. The satisfactory agreement of velocity spectrum can be obtained from the compare of fluctuating power spectrum and Von Karman spectrum. 3. We know the fact that the fluctuating pressure spectrums distributed peak at 0.01 Hz-0.1 Hz in the windward surfaces and at 0.1 Hz in the leeward surfaces. 4. We know the fact that the autocorrelation coefficients distributed stationary random processes with application time of hazard fluctuating wind loads.

Icing Loads on Fixed Cables: I. Laboratory Experiments (고정케이블에 작용하는 Icing 하중 :I. 실험)

  • ;Ettema, R
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.249-263
    • /
    • 1996
  • Presented herein are the results of a laboratory study on structural loads (icing weight and wind loads) associated with icing formation on rigidly fixed, circular power-transmission cables and cylinders. The experiments were carried out using movable wind tunnel under two different conditions: refrigerated and non-refrigerated conditions. Temporal evolution of icing loads were determined in the refrigerated laboratory and wind loads for icings at several stages of icing formation were measured in the non-refrigerated laboratory.

  • PDF