• Title/Summary/Keyword: 풍화광물

Search Result 315, Processing Time 0.031 seconds

Effects of Rock Weathering on the Degradation of Engineering Properties (암반풍화도에 따른 지질공학적 특성 저감효과)

  • Lee Chang-Sup;Cho Taechin
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.411-424
    • /
    • 2005
  • Weathering is defined as a process by which surface rock, once formed in the deep ground, is broken down and altered to keep the equilibrium with the ambient environment. In this study granitic rock samples of different weathering grades were collected in the field and the microscopic observation, X-ray diffraction analysis, electron microscopic observation, chemical analysis, and rock property tests were carried out. Formation of secondary minerals, especially clay minerals, by weathering was identified and the mechanism for the change of engineering properties such as rock strength degradation was analyzed. Tunnel model test, Failure behaviour, Shallow tunnel, Unsupproted tunnel length.

Influence of Coarse Grained Sandy Soil in Ground on Deterioration of Stone Cultural Properties (지면에 조성된 조립사질 토양이 석조문화재의 훼손에 끼치는 영향)

  • Do Jin-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.1 s.47
    • /
    • pp.31-38
    • /
    • 2006
  • Site environments bring about various different deterioration forms of stone cultural properties. The aim of this study is to document the influence of coarse grained sandy soil on the deterioration of stone cultural properties. Bulguksadabotap is a good example that demonstrates the problem with coarse grained sandy soil. The ground around the Bulguksadabotap is covered with coarse grained sandy soil and the pagoda is surrounded by the corridors. Coarse grained sandy soil float easily in the air and deposit in the complicated stone structure caused by strong wind in Gyeongju and numerous visitors. To explain the influence of coarse grained sandy soil on the deterioration, the coarse grained sandy soil and weathered stone pieces of Bulguksadabotap were analyzed by XRD, optical microscopy, SEM for mineralogical component and IC and ICP-AES for the soluble salts. The soil and weathered stone pieces include clay minerals, such as smectite and kaolinite, can expand with water and exert pressure on the stone. Small size of the clay minerals in the coarse grained sandy soil can easily penetrate into the weathered surfaces of the Bulguksadabotap. The weathered stone pieces also contain NaCl, which is known to contribute to increase the expandibility of clay minerals by providing with $Na^{+}$ or by dropping the equilibrium of relative humidity. These results indicates that coarse grained sandy soil is not proper to site environment for weathered stone cultural properties.

Interpretation of Electrical Resistivity Tomogram with Contents of Clay Minerals for the Land Creeping Area (점토광물 함유량을 고려한 땅밀림 산사태 지역의 전기비저항 자료의 해석)

  • Kim, Jeong-In;Kim, Ji-Soo;Lee, Sun-Joong;Cho, Kyoung-Seo;Kim, Jong-Woo
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.187-197
    • /
    • 2021
  • Clay mineral content of weathered zone is a key parameter for landslide studies. Electrical resistivity tomography is usually performed to delineate the geometry of complex landslides and to identify the sliding surface. In clay-bearing weathered zone, parallel resistivity Archie equation is employed to investigate the effect of conductivity added (resistivity reduced) by clay minerals of kaolinite and montmorillonite, which is dependent on their specific surface area and cation exchange capacities (CEC). A decrease of overall resistivity and apparent formation factor is observed with increasing pore-water resistivity, significantly in montmorillonite. Formation factor is found decreased with increasing porosity and decreasing cementation factor. Parallel Archie equation was applied to the electrical resistivity data from the test area (Sinjindo-ri, Taean-gun, Chungcheongnam-do, Korea) which experienced land creeping in the year of 2014. A panel test with varying clay-mineral contents provides the best fit section when the theoretical section constructed with the assumed contents approaches the field section, from which the clay-mineral content of the weathered zone is estimated to be approximately 10%. Resistivity interpretation schemes including the clay mineral contents for land creeping studies explored in this paper can be challenged more when porosity, saturation, and pore-water resistivity are provided and they are included in the numerical resistivity modeling.

Groundwater Quality and Contamination in Dukpyung area (충북 괴산군 덕평리 일대의 지하수 수질과 오염)

  • 김형돈;우남칠;최미정
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.141-147
    • /
    • 1998
  • This study was initiated to identify the general groundwater quality and the effects of heavy-metal enrichments in the black shales and coal materials in Dukpyung area. Groundwater quality could be divided into three groups based on the major weathering processes in the groundwater system; Group I of carbonate weathering, Group II of silicate weathering with the probable effects of acidic mine drainage, and Group III of silicate weathering with relatively high concentrations of chloride components in anions. Metal contamination of groundwater was not observed. Locally, however, acidic mine drainage appeared to be produced and recharged into the groundwater system. In addition, contamination by NO$_3$-N ranged 2 to 3 times higher than the drinking water standards, probably due to infiltration of domestic sewage and/or fertilizers into the shallow aquifer.

  • PDF

Study on Material Characterization of Earthen Wall of Buddhist Mural Paintings in Joseon Dynasty (조선시대 사찰벽화 토벽체의 재질특성 연구)

  • Lee, Hwa Soo
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.75-88
    • /
    • 2016
  • In this study, 5 mural paintings in the Buddhist temples of Joseon era were researched for component analysis on the soil contained in the walls. The results of particle size analysis showed that the ratio of particle contents were different in each layer. In the finishing layer, the distribution of the middle sand fraction is higher than that of the middle layer. The results of XRD analysis showed that quartz, feldspar, and clay mineral are the main components of sand, suggesting similar mineral composition to that of ordinary soil component. It seems weathered rocks were used for construction of the walls. The main chemical components detected from EDX analysis were Si, Al, Fe, and K. Also the SEM images showed sand or clay sized minerals. In conclusion, the walls of the buddhist mural paintings in Joseon Dynasty had been constructed by using the loess, and had been produced by using mixture of clay and sand particles of different sizes for each layer. This study identified the characteristics of the materials and the manufacturing technologies used on the walls of mural paintings of Buddhist temples in Joseon era.

가평지역에서 발견된 철운석에 대한 암석학적, 광물학적 기재 및 예비분류

  • An In-Su;Kim Tae-Gyeong;Choe Byeon-Gak
    • 한국지구과학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.111-115
    • /
    • 2006
  • 최근 경기도 가평지역에서 새로운 철운석이 발견되었으며, 이는 한반도에 낙하(fall) 또는 발견(find)된 운석 중 다섯 번째 기록이다. 가평운석(가칭)은 북위 $37^{\circ}52'08'$, 동경$127^{\circ}27'54'$, 고도 147m 지점에서 발견되었으며, 운석의 분류상 철운석에 속한다. 가평운석의 표면은 지표상에서 풍화를 받은 흔적이 나타나나, 내부는 비드만스태튼 무늬(Widmanstatten pattern)와 같은 철운석의 특징이 잘 보존되어 있다. 가평운석의 암석학적, 광물학적 기재와 분류를 위해 주사전자현미경(Scanning Electron Microscope) 및 전자 현미분석기(electron probe micro-analyzer)를 이용했다. 풍화의 산물인 철산화물이 나타나는 최외각부를 제외하면 가평 운석은 거의 순수한 철-니켈 금속광물(Fe-Ni metal)로 이루어져 있다. 이 중 니켈 함량이 적은 카마사이트(kamacite)가 대부분이며 소량의 태나이트(taenite)가 산출되어 비드만스태튼 무늬를 구성한다. 비드만스태튼 무늬의 특징에 의한 분류에 따르면 가평운석은 중립질 또는 조립질 옥타헤드라이트(octahedrite)에 속한다. 철운석은 화학적으로 열 개 이상의 하부그룹으로 세분되며, 가평운석의 정확한 하부그룹으로의 분류는 친철원소에 대한 미량분석이 추가적으로 필요하다. 가평운석의 냉각률은 $^{\sim}1^{\circ}C/Ma$이하로 나타나며, 이는 가평운석이 천천히 냉각된 비교적 규모가 큰 소행성의 핵에서 유래했음을 지시한다.

  • PDF

Genesis and Characteristics of the Soil Clay Minerals Derived from Major Parent Rocks in Korea IV. Genesis and Distribution of the Soil Clay Minerals (한국(韓國)의 주요(主要) 모암(母岩)에서 발달(發達)된 토양점토광물(土壤粘土鑛物)의 특성(特性)과 생성학적(生成學的) 연구(硏究) IV. 토양점토광물(土壤粘土鑛物)의 분포(分布) 및 생성(生成))

  • Um, Myung-Ho;Lim, Hyung-Sik;Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.202-212
    • /
    • 1992
  • This study reports on the genesis and mineralogical characteristics of the clay minerals in the soils derived from the five major parent rocks of granite, granite-gneiss, limestone, shale, and basalt in Korea. The investigation on the mineralogical aspects of primary and secondary minerals of the rocks and coarse fractions in the soils have been already reported. In this report, the identification of clay minerals in the soil clay fractions was done through the analyses of chemical, X-ray diffraction, and thermal methods. The studies showed clearly that much of the clay minerals was evolved by the weathering of primary minerals and some were further developed by the transformation of secondary minerals. Cation exchange capacity(CEC) of the clay fractions increased with higher amotunts of vermiculite, chlorite, and illite, however, decreased with higher hydroxy octahedral sheet within the interlayer spaces of vermiculite even if dominant clay with vermiculite. Feldspars in the granite and granite-gneiss might be completely transformed to kaolin mineral, Illite, chlolrite, and vermiculite formed by the alteration of micas, amphibole, augite, and primary chlorile seem to be subsequently transformed to the mixed layer minerals such as illite/vermiculite, illite/chlorite, and chlorite/vermiculite. These weathering products may be ultimately transformed into kaolin minerals. The smectite minerals in the clay fractions of the soils developed on the limestone are considerably present and they seem to be formed directly by the precipitation from high Mg solution and/or by the transformation of vermiculite from micas and chlorite in the parent materials. Abundant presence of illite in the soil clays developed on the shale is considered to have inherited from the fine particles and more resistant hydrous muscovite. The weathering sequences of the hydrous muscovite were as follows according to the degree of soil development ; hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer(Inceptisols, Daegu series) and hydrous muscovite ${\rightarrow}$ illite/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin mineral(Alfisols, Buyeo series). The plagioclase in the basalt might be mostly weathered to kaolin minerais. The augite in the basalt is likely to be transformed through progressive stage of weathering, augite ${\rightarrow}$ chlorite ${\rightarrow}$ chlorote/vermiculite mixed layer ${\rightarrow}$ vermiculite ${\rightarrow}$ kaolin. Another weathering sequence of augite could be expected, augite ${\rightarrow}$ chlorite ${\rightarrow}$ illite by the presence of illite and illite/vermiculite mixed layer in the clay fractions. Vermiculite and gibbsite were quantified from thermogravimetry(TG) and kaolin minerals, from both TG and differerential thermal analysis (DTA). Vermiculite in Jangseong series from the limestone was the dominant clay mineral of 21.7 percent and had a range in the order of 9.2 percent in Buyeo series to 5.4 percent in Daegu series from the shale. The rest soils ranged from 8.8 to 28.3 percent. Kaolin minerals were the dominant clay mineral of 32.7 percent in Asan series from the granite-gneiss and Gueom series of 32.0 percent from the basalt. The soils from the limestone ranged from 9.4 to 14.9 percent. The rest soils ranged from 8.9 to 28.6 percent. Gibbsite were 3.9 and 2.3 percent for Weoljeong and Chahang series from the granite, respectively. In Asan and Cheongsan series from the giranite-gneiss were 1.4 and 4.5 percent, respectively, and 3.6 percent in Jangpa series from the basalt.

  • PDF

Chemical Weathering Index of Clastic Sedimentary Rocks in Korea (국내 쇄설성 퇴적암의 화학적 풍화지수 고찰)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Kim, Jong-Woo;Kim, Tae-Hyung;Lee, Kyu-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.67-79
    • /
    • 2017
  • Evaluation of the weathering index using the quantitative element composition of rocks is very effective in predicting the degree of weathering of rocks and the secondary weathering residuals. While the process of weathering varies according to the types of rocks, the study of weathering in Korea is concentrated on acidic igneous rocks. This study calculated the weathering indices using whole rock analysis (X-ray fluorescence analysis) of sandstone, mudstone, and shale belonging to clastic sedimentary rocks. The statistical significance of the indices was examined based on the correlation of the calculated weathering indices. Clastic sedimentary rocks showed higher significance of Wp, CIA, CIW and PIA weathering index indicating weathering of feldspar. Chemical Index of alteration (CIA) has the advantage of predicting weathering pathway and clay mineral production, but it is effective to consider chemical index of weathering index (CIW) simultaneously to improve accuracy. In order to reduce uncertainties due to carbonate rocks and to estimate the accurate weathering index, rock samples with high CaO content should be excluded from the evaluation of weathering index.

Chemical Weathering Deterioration of Oya Tuff and Its Alteration to Zeolitic Materials (오야응회암의 지화학적 풍화 열화 특성과 변질작용)

  • Choo Chang Oh;Jeong Gyo-Cheol;Oh Dae Yul;Kim Jong-Tae;Seiki T.
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.381-390
    • /
    • 2004
  • This study was performed to relate the weathering properties of Oyaish tuff from Japan to mechanical properties of rocks in terms of mineralogical alteration and chemistry. The tuff is composed of clinoptilolite, quartz, feldspars, mordenite, opal C-T, and smectite. Since fresh tuff contains approximately $30\~50\%$ zeolite, it is expected that the rock is subjected to weathering process ascribed to water contents on earth surface, significantly reducing mechanical strength of tuff. It is also anticipated that weathering process and properties may be different even in the same rock mass, due to the differences in local mineralogy, chemistry and microtextures in tuff.