• Title/Summary/Keyword: 풍암분지

Search Result 14, Processing Time 0.021 seconds

Interpretation of High-resolution Seismic Data in the Middle Part of the Pungam Basin, Korea (풍암분지 중부지역의 고해상도 탄성파자료 해석)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.201-208
    • /
    • 1999
  • A high-resolution seismic profile acquired across the middle part of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures. Boundary faults, intrusive bodies, and unconformity surfaces are identified on the seismic section. Basin fills are divided into five depositional units (Units I, II, III, IV, and V in descending order). The normal faults were formed by transtentional movement along a sinistral strike-slip fault zone. Unconsolidated sediments, a weathered layer, and sedimentary layers overly the Precambrian gneiss. The granite body intruded at the southeastern part contacts the adjacent sedimentary rocks by a near-vertical fault. Granitic intrusions caused tectonic fractures and normal faults of various sizes. An andesitic intrusive body indicates post-depositional magmatic intrusions. Continuous strike-slip movements have deformed basin-filling sediments (Units I and II).

  • PDF

Basin evolution and provenance of . sediments of the Cretaceous Poongam sedimentary Basin (백악기 풍암 퇴적분지의 생성 진화와 퇴적물 기원)

  • Cheong Dae kyo;Kim Kyung hee
    • The Korean Journal of Petroleum Geology
    • /
    • v.7 no.1_2 s.8
    • /
    • pp.28-34
    • /
    • 1999
  • The Cretaceous Poongam sedimentary Basin in Kangwon-do, Korea consists alluvial deposits of conglomerates, sandstones, mudstones or siltstones, and volcaniclastics. The Poongam Basin was formed as a fault margin sag or a transpressional basin developed along a strike-slip fault zone, and received huge amount of clastic sediments from the adjacent fault-scaip. It formed an aggrading alluvial fan system and a volcaniclast-supplied marginal lake environment, while tectonic activity and volcanism attenuated toward the end of basin formation. Following the Folk's classification, the sandstones of the Poongam Basin are identified as lithic wackes or feldspathic wackes. The areal and sequential variation of the mineral composition in the sandstones is not distinct. The results of K-Ar age dating from the intruding andesites, volcaniclastics and volcanic fragments in sedimentary rocks show a range of 70 Ma to 84 Ma. It suggests that volcarism occurred sequentially within a relatively short period as the pre-, syn-, and post-depositional events. It was the short period in the late Cretaceous that the basin had evolved i.e., the basin formation, the sediment input and fill, and the , intrusion and extrusion of volcanic rocks occurred. The Poongam sedimentary sequence is a typical tectonic-controlled coarse sedimentary facies which is texturally immature.

  • PDF

Interpretation of Sedimentary Structure and Depositional Environment Based on a High-Resolution Seismic Profile across the Northeastern Boundary of the Pungam Basin (고해상도 탄성파자료를 이용한 풍암분지 북동부의 퇴적구조 및 퇴적환경 연구)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.91-99
    • /
    • 1999
  • A high-resolution seismic profile acquired across the northeastern boundary of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures across the basin boundary. We identified boundary faults and unconformity surfaces of the basin and divided sediment body into three seismic depositional units (Units I, II, and III from youngest to oldest). Inferred from fault geometry and type, northeastern part of the Pungam Basin has been formed by a strike-slip fault whereas the normal faults near the boundary were formed by transtensional movement along a fault zone. A 350-400 m thick sediment layer is overlying the Precambrian gneiss. Bedding planes of Unit III are dipping westward and are closely related to an anticline in the acoustic basement. Unit II is also tilted westward, suggesting that the eastern part of the fault zone was uplifted after deposition of lower part of the sedimentary body. Afterward, the uplifted sediment layers were eroded and transported to the western part of the basin. Chaotic reflection pattern of sedimentary Units II and III may suggest that strike-slip movement along the fault zone deformed basin-filled sediments.

  • PDF

Simultaneous traveltime inversion of surface and borehole seismic data in Pungam basin (풍암분지 시험시추공 주변에서의 지표 및 시추공 초동주시 동시역산)

  • Kim, Ki-Yeong;Hong, Myung-Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Velocity structures were defined in the vicinty of the 140-m deep test borehole in the pungam basin through simultaneous inversion of surface seismic refraction and far-ofset VSP traveltime data. Seismicenergy generated at the surface by a seisgun was recorded both at 42 surface locations at 3-m intervalsalong the profiles in the N20E and its orthogonal directions and at 71 m depth in the borehole. Forthe ofset VSP study, seismic energy was generated by a 5 kg sledgehamer at the surface in the horizontal ofset range of -19.5∼+19.5 m from the borehole. The seismic signals were detected at 9∼99 m depths with 1∼2 m intervals and recorded for 204 ms per shot. After shot static corrections,first-arrival times picked from both the surface refraction and borehole records were simultaneouslyinverted to yield velocity tomograms. The tomograms indicate that a 1.5 m thick soil layer with velocities les than 500 m/s overlies basements having a velocity range of 3,067 ∼5,717 m/s. Within the basements,∼4 m and deeper than 71 m. The high-velocit yzones may be due to conglomerates intercalated with sandstones and siltstones. No evidence for large-scale fracture zones or faults is detected near the borehole

  • PDF

Simultaneous tomographic inversion of surface and borehole seismic traveltime data in the Pungam basin (풍암분지 시험시추공 주변에서의 지표 및 시추공 초동주시 토모그래피 동시역산)

  • Hong, Myung-Ho;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.125-130
    • /
    • 2006
  • Both surface seismic and far-offset VSP data were recorded alongtwo mutually perpendicular profiles in the Pungam basin. The first-arrival times were simultaneously inverted using the tomography method. For the surface data, seismic energy was generated by a 5-kg sledgehammer at 48 stations and detected by 21 surface geophones at 3 m intervals and one 3-component geophone in test borehole for the purpose of static corrections. For the VSP data, seismic waves generated by the sledgehammer on the ground were detected by a 3-component borehole geophone in a depth range of $9{\sim}99\;m$. Delay times of the hammer data were corrected using the seisgun data before the inversion to yield velocity tomograms. The tomograms indicates that the soil layer with velocities less than 750 m/s averages 1.8 m thick. The velocity varies from 5353 m/s at the depth range of $31{\sim}40\;m$ to 4262 m/s at the depth range of $65{\sim}73\;m$. Compared with core samples, the relatively large variation in velocity may due to lithology changes and fracture effects with depth.

  • PDF

A Study on the Errors in Depth from a Geophysical Logging Well (물리검층공에서의 심도오차에 대한 분석과 보정)

  • 김영화;장승익
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.87-98
    • /
    • 1998
  • Multiple logging techniques consisting of geophysical logs, care logs, physical property measurements on core samples have been adopted on a test borehole drilled in the Pungam basin ; a small Cretaceous sedimentary basin located in Sosok area, Hongchon-gun, Kangwon Province, Korea. This study has been made to solve the problem of mismatches between the results of geophysical log and core log analyses. And the cause and range of depth errors as well as logging responses were studied. The result shows that the depth error caused by geophysical log is so small that it can be used as a reliable depth criterion in the borehole. The analysis of physical property measurements is also shown as very effective in determining the real depth and the geology of the borehole.

  • PDF

Paleomagnetic and Rock-Magnetic Studies of Cretaceous Sedimentary Rocks in the Poongam Basin (풍암분지에 분포하는 백악기 퇴적암류에 대한 고지자기 및 암석자기 연구)

  • Park, Yong-Hee;Doh, Seong-Jae
    • Economic and Environmental Geology
    • /
    • v.37 no.2
    • /
    • pp.195-206
    • /
    • 2004
  • Paleomagnetic and rock-magnetic investigations have been carried out for the Cretaceous sedimentary rocks in the Poongam (also called Gapcheon) Basin in the eastern South Korea. A total of 128 independently oriented core samples were drilled from 13 sites for this study. The mean direction after bedding correction (D/I=353.1$^{\circ}$/55.6$^{\circ}$, k=21.5, =$$\alpha$_{95}$=10.1$^{\circ}$) is more dispersed than the mean direction before bedding correction (D/I=10.5$^{\circ}$/56.9$^{\circ}$, k=73.9, =$$\alpha$_{95}$=5.3$^{\circ}$), and the stepwise unfolding of the characteristic remanent magnetization (ChRM) reveals a maximum value of k at 20% unfolding. Secondary authigenic hematite accompanied by altered clays such as chlorite was identified by the electron microscope observations. These results collectively imply that the ChRM is remagnetized due to the formation of the secondary authigenic hematite after tilting of the strata. It is interpreted that the chemical remagnetization was connected to the introduction of mixed magmatic-meteoric fluids, which formed hydrothermal vein deposits near the study area. The paleomagnetic pole position (214.3$^{\circ}$E, 81.6$^{\circ}$N, =$A_{95}$=7.4$^{\circ}$) of the Cretaceous sedimentary rocks calculated from remagnetized directions is close to those of the Late Cretaceous and Tertiary poles of the Korean Peninsula. This Late Cretaceous to Tertiary remagnetization seems to be widespread over the Okcheon Belt because the chemical remagnetization is previously reported to be found in rocks from other Cretaceous small basins (e.g., Eumseong, Gongju and Youngdong basins) along the Okcheon Belt and some Paleozoic strata from the Okcheon unmetamorphosed zone.

High-resolution Seismic Study Using Weigh-drop at the Boundary of Pungam Basin (중력추를 이용한 풍암분지 경계 부근에서의 고해상도 반사파 탐사)

  • Kim, Hyoun Gyu;Kim, Ki Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.519-526
    • /
    • 1998
  • A high-resolution seismic survey was conducted at the northeastern boundary of Pungam basin, one of the Cretaceous sedimentary basins in Korea. A 100 kg weight was used as an energy source and was found to be better than a sledge hammer in mapping deeper geologic structures. Several processing techniques such as f-k filtering, predictive deconvolution, and time-variant filtering are useful to enhance the signal-to-noise ratio by suppressing unwanted seismic energy. Four seismic units are recognized where many vertical faults are developed. The boundary fault between sedimentary rocks and Precambrian gneiss is identified along with a fracture zone of approximately 30 m wide. Bedding planes of the sedimentary rocks dipping westward are interpreted to be limbs of a syncline or volcanic flow. There faults and tilted bedding planes indicate that the basin had undergone significant tectonic deformation.

  • PDF

Lithology Determination by Log Analysis from a Borehole-PABH1 in the Pungam Sedimentary Basin (풍암퇴적분지 내 시추공 PABH1에서의 물리검층에 의한 암상의 판정)

  • 김영화;장승익
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.163-173
    • /
    • 1998
  • Suite of log analysis techniques consisting of geophysical well log, geological core log, and physical core log have been made to understand the well log responses and to determine the lithology of a test borehole-PABH1 located in Pungam sedimentary basin, Sosok, Hongchon-gun, Kangwon Province. Geological core logging has been precisely made over the cores taken between 64 and 124 meters, and 11 groups of rock types were deduced. Using the core samples divided by 11 groups, geophysical property measurements consisting of resistivity, natural gamma and density were made. Each rock group in the area is shown to have its characteristic physical response from geophysical well log and geophysical core logs. The outstanding physical responses particularly shown from siltstone, coarse sandstone to conglomerate, and granitic gneiss in the area were effectively used as keybeds in correlating the geophysical well logs to the result of geological core logs.

  • PDF