• Title/Summary/Keyword: 풍속 데이터

Search Result 234, Processing Time 0.025 seconds

Characteristics of Our Coastal Wind Distribution in Winter (겨울철 우리나라 연안의 바람 분포 특성)

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.34-35
    • /
    • 2014
  • 겨울철에 우리나라는 서고동저형 기압 배치에 의한 북서계절풍이 지배적이다. 그리고 수시로 온대저기압이 발달하면서 우리나라 인근을 동진하면서 때때로 악천후를 동반하기도 한다. 지속성이 강한 계절풍은 선박의 안전운항과 기상재해에 큰 원인을 제공한다. 이 연구에서는 최근 20년간(1993-2012년)의 장기간의 데이터를 이용하여 우리나라 연안의 관측점 8곳에 있어서의 겨울철 바람 분포의 특성을 분석하였다. 연구 결과는 다음과 같다. 우리나라 서해 연안에 있어서의 겨울철 풍속은 인천을 제외한 군산 및 목포에서 시간의 흐름과 함께 약해지는 경향을 보인다. 그리고 동해 연안의 관측점 3곳(포항, 울진, 속초) 모두에서 시간의 흐름과 함께 풍속이 약해지고 있다는 사실을 알 수 있었다. 남해 연안의 경우는 여수 및 통영에서 시간의 흐름과 함께 풍속은 크게 변하지 않았다. 계절풍의 영향이 남해 연안보다 강한 서해 및 동해 연안의 바람이 약해지는 경향을 보이는 것은 겨울철의 전형적인 서고동저형 기압 배치의 변화 등에서 그 원인을 찾을 수 있을 것이다. 남해 연안의 풍속에 큰 변화가 없는 것은 계절풍보다는 온대저기압의 영향을 더 크게 받기 때문인 것으로 판단된다.

  • PDF

Simulation Modeling cnd Analysis of Pitch Controlled Variable Speed Wind Turbine System (피치제어형 가변속 풍력터빈 시스템의 시뮬레이션 모델링과 해석)

  • Kim, Eel-Hwan;Kang, Geong-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • This paper presents the simulation modeling and analysis of variable wind speed turbine system(VWTS) using Psim program In the simulation, using the Vestas V47 VWTS located in Hangwon wind farm in Jeju-Do as a model, wind model, blade model, pitch control model and grided connected generator are modeled. The VWTS is controlled by the optimal pitch angle for maximum output power under the rated wind speed and for the rated output power over the rated wind speed. To verify the effectiveness of proposed method, simulation results are compared with the actual data from the model system According to the comparison of these results, this method shows excellent performance. So it is very useful for understanding and applications of wind power control system.

Analysis of extreme wind speed and precipitation using copula (코플라함수를 이용한 극단치 강풍과 강수 분석)

  • Kwon, Taeyong;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.797-810
    • /
    • 2017
  • The Korean peninsula is exposed to typhoons every year. Typhoons cause huge socioeconomic damage because tropical cyclones tend to occur with strong winds and heavy precipitation. In order to understand the complex dependence structure between strong winds and heavy precipitation, the copula links a set of univariate distributions to a multivariate distribution and has been actively studied in the field of hydrology. In this study, we carried out analysis using data of wind speed and precipitation collected from the weather stations in Busan and Jeju. Log-Normal, Gamma, and Weibull distributions were considered to explain marginal distributions of the copula. Kolmogorov-Smirnov, Cramer-von-Mises, and Anderson-Darling test statistics were employed for testing the goodness-of-fit of marginal distribution. Observed pseudo data were calculated through inverse transformation method for establishing the copula. Elliptical, archimedean, and extreme copula were considered to explain the dependence structure between strong winds and heavy precipitation. In selecting the best copula, we employed the Cramer-von-Mises test and cross-validation. In Busan, precipitation according to average wind speed followed t copula and precipitation just as maximum wind speed adopted Clayton copula. In Jeju, precipitation according to maximum wind speed complied Normal copula and average wind speed as stated in precipitation followed Frank copula and maximum wind speed according to precipitation observed Husler-Reiss copula.

Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station (수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구)

  • Yim Jin-Woo;Lee Kyung-Rok;Shim Jae-Seol;Kim Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The influence of leodo Ocean Research Station structure to surrounding atmospheric flow is carefully investigated using CFD techniques. Moreover, the validation works of computational results are performed by the comparison with the observed data of leodo Ocean Research station. In this paper, we performed 3-dimensional CAD modelling of the station, generated the grid system for numerical analysis and carried out flow analyses using Navier-Stokes equations coupled with two-equation turbulence model. For suitable free stream conditions of wind speed and direction, the interference of the research station structure on the flow field is predicted. Beside, the computational results are benchmarked by observed data to confirm the accuracy of measured date and reliable data range of each measuring position according to the wind direction. Through the results of this research, now the quantitative evaluation of the error range of interfered gauge data is possible, which is expected to be applied to provide base data of accurate sea surface wind around research stations.

A Study on Shipments of Swimming Crab Using Negative Binomial Regression Model (음이항회귀모형을 이용한 꽃게 출하량에 관한 연구)

  • Nam, Yeongeun;Seo, Jihyun;Choi, Gayeong;Lee, Kyeongjun
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2941-2951
    • /
    • 2018
  • The purpose of this paper is to analyse the effect of ocean weather factors on shipments of swimming crab. We use the data of data portal and ocean weather factors (mean wind velocity, mean atmospheric pressure, mean relative humidity, mean air temperature, mean water temperature, mean maximum wave height, mean significant wave height, maximum significant wave height, maximum wave height, mean wave period, maximum wave period). We did statistical analysis using Poisson regression analysis and negative binomial regression analysis. As the result of study, important factors influential in the shipments of swimming crab turn out to be mean wind velocity, mean atmospheric pressure, mean relative humidity, mean water temperature, maximum wave height, mean wave period and maximum wave period. the shipments of swimming crab increases as mean wind velocity, mean atmospheric pressure, mean relative humidity, mean water temperature increases or mean wave period increase. However, as maximum wave height, maximum wave period decreases, the shipment of swimming crab increases.

2-Dimensional Section Model Experimental Study of 1200m Span Cable-Stayed Bridge (주경간 1200m급 사장교 2차원 단면모형실험)

  • Lee, Ho-Yeop;Chun, Nak-Hyun;Oh, Seung-Taek;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.76-76
    • /
    • 2011
  • 현재까지 시공된 사장교 중, 주경간이 가장 긴 교량은 중국의 수통대교(1088m)이다. 이에 버금가는 사장교로 홍콩의 스톤커터교(1018m) 역시 주경간장이 1000m가 넘는다. 바야흐로 사장교 역시 주경간 1000m의 시대가 열린 것이다. 우리나라 역시 세계적 흐름에 맞추어 주경간 800m의 인천대교(세계 5위)를 시공한바 있다. 이와 같이 교량의 초장대화는, 교량 건설 분야에서 기술경쟁력의 지표가 될 뿐만 아니라 세계 건설 시장의 큰 흐름이라고 할 수 있다. 이에 본 연구는 세계적 추세에 발맞추어, 국내 각계의 건설 전문가들이 모여 만든 초장대 교량 사업단의 기술 혁신 사업의 일환으로 이루어졌다. 교량이 장대화 되면서 바람의 의한 영향이 중요해진다는 것은 주지의 사실이다. 특히 사장교와 현수교 같은 특수 교량의 경우, 정적 및 동적 내풍 성능이 반드시 고려되어야만 한다. 본 연구에서는 주경간 1200m의 사장교를 가정하고, 이 사장교의 내풍 단면을 개발, 그 단면에 대한 정적 및 동적 내풍 성능을 평가하고자 하였다. 정적 내풍 성능으로는 단면의 형상에 따른 풍하중을 파악하고자 했으며, 동적 내풍 성능으로는 풍속에 따른 교량의 연직방향 변위 및 플러터 속도를 파악하고자 하였다. 이 실험은 추후에 3차원 전교모형실험의 기본 데이터로 활용하였다. 본 실험을 통해 개발된 단면의 등류 및 난류 상태에서의 영각별 정적 공기력계수를 계산해내었고, 설계풍속이 54.7m/s일때 한계풍속 65.64m/s(거마대교 기준)하에서의 중앙 경간의 풍속별 평균 변위를 측정하였으며, 이를 토대로 이 교량의 영각별 플러터 속도를 계산해 내었다.

  • PDF

An Analysis on the Characteristics of Wind Distribution in the Coast of Busan Using AWS Data (AWS 데이터를 이용한 부산 해안의 바람분포 특성 해석)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.549-554
    • /
    • 2009
  • Wind velocity and wind direction are very important in the viewpoint of ship's safety and stability of port structure. The characteristics of wind distribution in the coast of Busan are analyzed for 10 years from 1997 to 2006 using AWS(Automatic Weather System) data. The characteristics of wind distribution of Miryang, is not affected by the land and sea breeze are also examined to understand clearly the characteristics of wind distribution in the coast of Busan. The mean wind velocity in the coast of Busan is stronger than that of Miryang. The mean wind velocitie at Youngdo and Gadukdo stations of Busan are stronger about 2.0 times than those at IlGwang, Haeundae and Daeyeon stations. The correlation a states show that the variation tendencies of monthly mean wind velocitie in the coast of Busan are very similar. The maximum monthly mean velocitie in the coast of Busan are recorded in September. This re ult is closely related to the influence of typhoon. The maximum instantaneous wind velocitie are also strong at Youngdo and Gadukdo stations and the peaks of maximum instantaneous wind $velocit^9$ are observed mainly from August to September. In the coast of Busan, the SW'ly-NNE'ly wind are prevailing in the winter and the SW'ly and NE'ly wind are predomi snt in the spring. w that the vs of wind direction in the summer and athumn are similar with those in the spring and winter, respectively.

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.

The Study on Assessment of Roughness Coefficient for Designing Wind Farm in Jeju Island (제주도 풍력발전단지 설계를 위한 조도계수 산정에 대한 연구)

  • Ko, Jung-Woo;Quan, He Chun;Lee, Byung-Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • The variation in the wind speed with height above ground is called the wind shear profile. In the field of wind resource assessment, analysts typically use one of two mathematical relations to characterize the measured wind shear profile: the logarithmic profile (log law) and the power law profile (power law). The logarithmic law uses the surface roughness as a parameter, and the power law uses the power law exponent as a parameter. The shape of the wind shear profile typically depends on several factors, most notably the roughness of the surrounding terrain and the stability of the atmosphere. Since the atmospheric stability changes with season, time of day, and meteorological conditions, the surface roughness and the power law exponent also tends to change in time. For this study, Using the observed data from Met-mast, located in Pyeongdae, Handong in Jeju. we used the matlab and windograper to calculate roughness length and the law exponents. These calculations are similar to reference the data, but they have different ranges. In the ocean case, each reference data and calculated data was the same, but the crop area is higher than the earlier studies. In addition, the agricultural village is lower than the earlier studies.

Persistence Analysis of Observed Metocean Data in the Southwest Coast in Korea (서남해안 연안 해양기상 관측자료의 지속시간 특성 분석)

  • Gi-Seop, Lee;Gyung-Sik, Seo;Hong-Yeon, Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.303-314
    • /
    • 2022
  • The persistence analysis of marine physical environment factors is a basic analysis that must precede the use of sea areas as an analysis required in the coastal engineering such as downtime and design. In this study, the persistence analysis was implemented for wind speed and significant wave height data from four observation points of Deokjeokdo, Oeyeondo, Geomundo, and Geojedo among the marine meteorological observation buoys of the Korea Meteorological Administration. The persistence time means the consecutive time of observation data beyond specific level. The threshold wind speed and significant wave height were set in the range of 1~15 m/s and the range of 0.25~3.0 m, respectively. Then, the persistence time was extracted. As a result of the analysis, the persistence time of wind speed and significant wave height decreased rapidly as the reference value increased. The median persistence times under the maximum reference thresholds were assessed as a maximum of 5 hours for wind speed and a maximum of 8 hours for significant wave height. When the reference wind speed and significant wave height were 15 m/s and 3 m, respectively, the persistence time that could occur with a 1% probability were 52 and 56 hours. This study can be expanded to all coastal areas in Korea, and it is expected that various engineering applications by performing a persistence analysis of the metocean data.