• Title/Summary/Keyword: 풍속 데이터

Search Result 234, Processing Time 0.023 seconds

Implementation of Ultrasonic Anemometer & Anemoscope Data-Logger System (초음파 풍향 풍속계 데이터 로거 시스템의 구현)

  • Lee, Woo-Jin;Yim, Jae-Hong;Kang, Young-Gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.2
    • /
    • pp.184-190
    • /
    • 2014
  • Until now ship communication micro serial network communication method is designed for the communication between the controller and the RS-422 communication on the international standard ISO 1993, but gradually progresses NMEA 2000 standardized fast Ethernet-based communications environments expected to be replaced. In addition, the ship's main instrumentation equipment versatility with ease gradually to control devices by monitoring and controlling are. Wind anemometer, ship mast end, where the highest wind farms typically install a separate console boxes, data loggers, indicators was required in order to manage them, to maintain them, to go through the procedures and cumbersome data update firmware were Therefore, in this paper, using the PC network, ultrasonic wind speed data processing system for implementing functional was expressed as a function of the technology elements, NMEA 2000 standard certified in separate operating console without the features of the data loggers, indicators, implementation by ultrasonic wind data processing system was implemented to minimize the maintenance cost of the operating system.

The Design of a Wind Speed & Direction Module and a DSP Sensor Interface System for the Meteorological System (기상계측시스템을 위한 풍향.풍속모듈 및 DSP 센서 인터페이스시스템 설계)

  • Song, Do-Ho;Joo, Jae-Hun;Ock, Gi-Tae;Kim, Sang-Gab;Choi, Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1478-1485
    • /
    • 2007
  • In this paper, a meteorological system including a wind speed & direction module and the DSP(Digital Signal Processor) sensor interface circuit board are proposed. This DSP system accepts and process the informations from a wind speed & direction module, the atmospheric pressure sensor, the ambient air temperature sensor and transfers it to the PC monitoring system. Especially, a wind speed & direction module and a DSP hardware are directly designed and applied. A wind speed & direction module have a construction that it have four film type RID(Resistive Temperature Detectors) resistive sensor adhered around the circular metal body heated constantly by heating coil for obtaining vector informations about wind. By this structure, the module is enabled precise measurement having a robustness about vibration, humidity, corrosion. A sensor signal processing circuit is using TMS320F2812 TI(Texas Instrument) Corporation high speed DSP. An economical meteorological system could be constructed through the data from wind speed & direction module and by the fast processing of DSP interface circuit board.

Guideline for Bridge Design Wind Speed in Coastal Region (해안지역 교량 설계풍속 산정 가이드라인)

  • Lee, Sungsu;Kim, Junyeong;Kim, Young-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • Estimation of wind load on bridges is one of the most important aspects in designing bridges in coastal region. Various design codes and researches have suggested the procedure to estimate design wind speed; however, they do not match one another due to many reasons such as incomplete data set, ignorance of wind environment and so on. For this reason, the necessity of guideline for estimation procedure of basic wind speed which reflect the roughness of surface and the topographical effect have been increasing. In this study, we have analysed limitations of the basic wind speed of nationwide suggested by Korea Building code(AIK, 2009) and Highway bridge design code(MOLTMA, 2010). In additional, we set forth guidelines considering the roughness of land surface and the topographical effect. Using the procedure, the basic wind speed were estimated for 15 coastal regions in Korea and compared with those listed in the existing codes.

Prediction of module temperature and photovoltaic electricity generation by the data of Korea Meteorological Administration (데이터를 활용한 태양광 발전 시스템 모듈온도 및 발전량 예측)

  • Kim, Yong-min;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • In this study, the PV output and module temperature values were predicted using the Meteorological Agency data and compared with actual data, weather, solar radiation, ambient temperature, and wind speed. The forecast accuracy by weather was the lowest in the data on a clear day, which had the most data of the day when it was snowing or the sun was hit at dawn. The predicted accuracy of the module temperature and the amount of power generation according to the amount of insolation decreased as the amount of insolation increased, and the predicted accuracy according to the ambient temperature decreased as the module temperature increased as the ambient temperature increased and the amount of power generated lowered the ambient temperature. As for wind speed, the predicted accuracy decreased as the wind speed increased for both module temperature and power generation, but it was difficult to define the correlation because wind speed was insignificant than the influence of other weather conditions.

Application of the Artificial Neural Network Technique for Estimation of Structure Responses due to Wind Load (풍하중으로부터 구조반응 추정을 위한 인공신경망 기법의 적용)

  • Moon, Jin-Cheol;Park, Hyo-Seon
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • 고층건물의 최상층 수평변위는 해당 건물의 안전성 및 사용성 평가에 중요한 지표가 된다 이러한 건물의 수평변위는 주로 풍하중에 기인한다 본 논문에서는 이러한 구조반응을 풍하중에 기인한 풍속데이터로부터 직접 추정하기 위해서 인공신경망(Artificial Neural Network, ANN)을 도입하였다 이에 대한 적용성을 판단하기 위해서 고층건물을 형상화한 모형테스트를 실시하고 풍향, 풍속, 변위 값을 얻었다. 이후 인공신경망에 적용시켜 실제 실험 데이터와의 비교를 통해 타당성을 검토하였다.

  • PDF

Analytical Study on the Peak of Typhoons (태풍의 피크기에 관한 분석 연구)

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.10a
    • /
    • pp.94-95
    • /
    • 2014
  • 10년간(1992-2011년)의 데이터를 이용하여 태풍의 피크기에 대하여 분석하였다. 얻어진 주요 결과를 정리하면 다음과 같다. 최대풍속 20-29m/s와 40-49m/s의 태풍이 상대적으로 높은 비율을 차지하고 초강력 태풍이라고 구분할 수 있는 최대풍속 50-59m/s의 태풍도 많은 수를 차지한다. 최대풍속 50m/s 이상의 초강력 태풍은 전체 태풍 수의 24%를 차지하고 최대풍속 60m/s 이상의 태풍도 존재하여 이에 대한 항해자의 경계를 요한다. 태풍의 피크기가 주로 나타나는 곳은 북위 15도에서 25도, 동경 120도에서 140도의 해역이다. 태풍 피크기의 유지시간은 12시간 이내가 전체 태풍의 27%(59개), 13-24시간이 29%(64개), 25-48시간이 30%(66개)를 차지하여 대부분의 경우 피크기의 유지시간은 2일 이내이다. 초강력 태풍은 주로 9월에 발생하고 5월, 8월, 10월에도 높은 빈도수를 보여 이 시기에 발생하는 태풍에 대하여 각별히 주의할 필요가 있다.

  • PDF

A Study on the Flight Initiation Wind Speed of Wind-Borne Debris (강풍에 의한 비산물의 비행 시작 풍속에 관한 연구)

  • Jeong, Houigab;Lee, Seungho;Park, Junhee;Kwon, Soon-duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.105-110
    • /
    • 2020
  • This study provides a method and data for predicting the flight initiation wind speed of wind-borne debris. From the force equilibrium acting on debris including aerodynamic and inertia forces, the equation for predicting the flight initiation wind speeds are presented. Wind tunnel tests were carried out to provide necessary aerodynamic data in the equation for the debris with various aspect ratios. The proposed equation for flight initiation wind speeds was validated from free flying tests in the wind tunnel. The flights of debris were mostly initiated by slip when width to thickness was less than 10, otherwise overturning were dominant. The actual flight initiation speeds were lower than that of the computed ones. The surface boundary layer flow and the gap between the debris and surface might affect the prediction error.

Development of a Program for Calculating Typhoon Wind Speed and Data Visualization Based on Satellite RGB Images for Secondary-School Textbooks (인공위성 RGB 영상 기반 중등학교 교과서 태풍 풍속 산출 및 데이터 시각화 프로그램 개발)

  • Chae-Young Lim;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.173-191
    • /
    • 2024
  • Typhoons are significant meteorological phenomena that cause interactions among the ocean, atmosphere, and land within Earth's system. In particular, wind speed, a key characteristic of typhoons, is influenced by various factors such as central pressure, trajectory, and sea surface temperature. Therefore, a comprehensive understanding based on actual observational data is essential. In the 2015 revised secondary school textbooks, typhoon wind speed is presented through text and illustrations; hence, exploratory activities that promote a deeper understanding of wind speed are necessary. In this study, we developed a data visualization program with a graphical user interface (GUI) to facilitate the understanding of typhoon wind speeds with simple operations during the teaching-learning process. The program utilizes red-green-blue (RGB) image data of Typhoons Mawar, Guchol, and Bolaven -which occurred in 2023- from the Korean geostationary satellite GEO-KOMPSAT-2A (GK-2A) as the input data. The program is designed to calculate typhoon wind speeds by inputting cloud movement coordinates around the typhoon and visualizes the wind speed distribution by inputting parameters such as central pressure, storm radius, and maximum wind speed. The GUI-based program developed in this study can be applied to typhoons observed by GK-2A without errors and enables scientific exploration based on actual observations beyond the limitations of textbooks. This allows students and teachers to collect, process, analyze, and visualize real observational data without needing a paid program or professional coding knowledge. This approach is expected to foster digital literacy, an essential competency for the future.

Variation of Monsoon in Western Korea (우리나라 서해안의 계절풍 변화)

  • Seol, Dong-Il
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.19-20
    • /
    • 2013
  • 겨울철에 우리나라 서해 및 서해안은 북서계절풍이 지배적이다. 지속성이 강한 계절풍은 선박의 안전운항과 기상재해에 큰 영향을 미친다. 이 연구에서는 30년간(1981-2010년)의 장기간의 데이터를 이용하여 우리나라 서해안에 있어서의 겨울철 계절풍의 변화를 분석하였다. 얻어진 결과는 다음과 같다. 우리나라 서해안의 인천, 군산 및 목포에 있어서의 풍속은 12월, 1월 그리고 2월에 공통적으로 시간의 흐름과 함께 약해지는 경향을 보인다. 풍속이 약해지는 정도는 특히 군산에서 크고 인천과 목포에서는 서로 비슷하다. 우리나라 남해안에 위치하는 통영의 경우는 시간의 흐름과 함께 오히려 풍속에 강해지는 변화 특성을 보여 서해안의 계절풍 변화와는 큰 차이를 보인다. 인천, 군산 및 목포 중에서 풍속이 가장 강한 곳은 목포이고, 그 다음은 군산, 인천의 순이다. 우리나라 서해안의 계절풍이 약해지는 것은 겨울철의 전형적인 서고동저형 기압배치의 변화 등에서 그 원인을 찾을 수 있을 것이다.

  • PDF

Development for Estimation Improvement Model of Wind Velocity using Deep Neural Network (심층신경망을 활용한 풍속 예측 개선 모델 개발)

  • Ku, SungKwan;Hong, SeokMin;Kim, Ki-Young;Kwon, Jaeil
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.597-604
    • /
    • 2019
  • Artificial neural networks are algorithms that simulate learning through interaction and experience in neurons in the brain and that are a method that can be used to produce accurate results through learning that reflects the characteristics of data. In this study, a model using deep neural network was presented to improve the predicted wind speed values in the meteorological dynamic model. The wind speed prediction improvement model using the deep neural network presented in the study constructed a model to recalibrate the predicted values of the meteorological dynamics model and carried out the verification and testing process and Separate data confirm that the accuracy of the predictions can be increased. In order to improve the prediction of wind speed, an in-depth neural network was established using the predicted values of general weather data such as time, temperature, air pressure, humidity, atmospheric conditions, and wind speed. Some of the data in the entire data were divided into data for checking the adequacy of the model, and the separate accuracy was checked rather than being used for model building and learning to confirm the suitability of the methods presented in the study.