• Title/Summary/Keyword: 풍력발전터빈

Search Result 189, Processing Time 0.02 seconds

A study on design and aerodynamic characteristics of a spiral-type wind turbine blade (스파이럴형 풍력터빈 블레이드의 설계 및 공력특성에 관한 연구)

  • Lu, Qian;Li, Qiang;Kim, Yoon-Kee;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper describes a new design of small-scale horizontal wind blade, called spiral wind turbine blade. Theoretical and numerical approaches on the prediction of aerodynamic performance of the blade have been conducted. A theoretical equation is successfully derived using the angular momentum equation to predict aerodynamic characteristics according to the design shape parameters of spiral blade. To be compared with the theoretical value, a numerical simulation using ANSYS CFX v12.1 is performed on the same design with the theoretical one. Large scale tip vortex is captured and graphically presented in this paper. The TSR-$C_p$ diagram shows a typical parabolic relation in which the maximum efficiency of the blade approximately 25% exists at TSR=2.5. The numerical simulation agrees well with that of the theoretical result except at the low rotational speed region of 0~20 rad/s.

Development of a Cross-flow Type Vertical Wind Power Generation System for Electric Energy Generation Using Convergent-Divergent Duct (축소-확대 유로에 적용한 횡류형 수직 풍력발전시스템의 개발)

  • Chung, Sang-Hoon;Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.543-548
    • /
    • 2011
  • New concept of wind energy conversion system is proposed to increase the energy density at a given working space. The quality of wind for wind power generation is depend on its direction and speed. However, the quality is not good on land because wind direction is changeable all the time and the speed as well. The most popularly operated wind turbine system is an axial-flow free turbine. But its conversion efficiency is less than 30% and even less than 20% considering the operating time. In this research, a cross-flow type wind turbine system is proposed with a convergent-divergent duct system to accelerate the low speed wind at the inlet of the wind turbine. Inlet guide vane is also introduced to the wind turbine system to have continuous power generation under the change of wind direction. In here, the availability of wind energy generation is evaluated with the change of the size of the inlet guide vane and the optimum geometry of the turbine impeller blade was found for the innovative wind power generation system.

Wake Losses and Repositioning of Wind Turbines at Wind Farm (풍력발전단지의 후류손실 및 터빈 재배치에 관한 연구)

  • Park, Kun-Sung;Ryu, Ki-Wahn;Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.3
    • /
    • pp.17-25
    • /
    • 2015
  • The main objective of this study is to predict the wind power generation at the wind farm using various wake models. Modeling of wind farm is a prerequisite for prediction of annual energy production at the wind farm. In this study, we modeled 20 MW class Seongsan wind farm which has 10 wind turbines located at the eastern part of Jeju Island. WindSim based on the computational fluid dynamics was adopted for the estimation of power generation. The power curve and thrust coefficient with meteorology file were prepared for wind farm modelling. The meteorology file was produced based on the measured data of the Korea Wind Atlas provided by Korea Institute of Energy Research. Three types of wake models such as Jensen, Larsen, and Ishihara et al. wake models were applied to investigate the wake effects. From the result, Jensen and Ishihara wake models show nearly the same value of power generation whereas the Larsen wake model shows the largest value. New positions of wind turbines are proposed to reduce the wake loss, and to increase the annual energy production of the wind farm.

One-way Coupled Response Analysis between Floating Wind-Wave Hybrid Platform and Wave Energy Converters (부유식 풍력-파력발전 플랫폼과 탑재된 파력발전기와의 단방향 연성 운동 해석)

  • Lee, Hyebin;Bae, Yoon Hyeok;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.84-90
    • /
    • 2016
  • In this study, a six degree-of-freedom motion analysis of a wind-wave hybrid platform equipped with numerous wave energy converters (WECs) was carried out. To examine the effect of the WECs on the platform, an analysis of one-way coupling was carried out, which only considered the power take-off (PTO) damping of the static WECs on the platform. The equation of motion of a floating platform with mooring lines in the time domain was established, and the responses of the one-way coupled platform were then compared with the case of a platform without any coupling effects from the WECs. The hydrodynamic coefficients and wave exciting forces were obtained from the 3D diffraction/radiation pre-processor code WAMIT based on the boundary element method. Then, an analysis of the dynamic responses of the floating platform with or without the WEC effect in the time domain was carried out. All of the dynamics of a floating platform with multiple wind turbines were obtained by coupling FAST and CHARM3D in the time domain, which was further extended to include additional coupled dynamics for multiple turbines. The analysis showed that the PTO damping effect on platform motions was negligible, but coupled effects between multiple WECs and the platform may differentiate the heave, roll, and pitch platform motions from the one without any effects induced by WECs.

The MPPT Control Method of the PMSG Wind Generation System using the Turbine Model with a Squirrel Cage Induction Motor (농형 유도기 터빈 모델을 이용해 구현한 영구자석 동기기 풍력발전 시스템의 MPPT 제어)

  • Lee, Joon-Min;Kim, Dong-Hwa;Shin, Hye-Su;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This paper presents the MPPT(Maximum Power Point Tracking)control method of the PMSG wind generation system using the turbine model with a squirrel cage induction motor. The torque of squirrel cage induction turbine model is controlled by mathematization of speed characteristics of real blade. In this paper, maintenance and cost issues into consideration, except for previous method using information of the velocity of the wind speed sensor, the algorithm is presented. The algorithm is controlled by tracking the optimal point, the generator speed and maximum grid power. The vector controls of the generator side converter and the grid side converter are controlled respectively to obtain maximum torque and regulate unity power factor. With Psim simulations and experiments, the efficiency of squirrel cage induction turbine model and the validity of control algorithm are verified.

PMSG Wind Turbine Simulation under the consideration of real characteristics (PMSG 풍력 터빈의 특성을 고려한 발전 시스템 시뮬레이션)

  • Sim, Junbo;Kim, Myungho;Park, Kihyeon;Han, Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.182.2-182.2
    • /
    • 2010
  • A various algorism has been studied to extract possibly every energy from a wind turbine in conjunction with the increase of concern about wind power system. In order to verify these control algorism, it is essential to make the most similar conditions to the real wind turbine's environment. Therefore, using separately excited DC motor a wind turbine the most similar to the real turbine is simulated. Tower shadow effect and Wind shear effect are considered as well as inertia emulation. For the control of Back-to-Back Converter Vector current control methods and space vector pulse width modulation are used and for reducing THD of grid current LCL filter is considered. This simulation results verified the energy produced by wind all flows into the utility under the consideration of the characteristics of a wind turbine. The result of this paper is expected to be used as a basic material for analyzing the characteristics of the wind turbine generator.

  • PDF

Structural Analysis and Test of Composite Wind Turbine Blade (풍력발전기용 복합재 윈드터빈 블레이드의 구조해석 및 실험)

  • Jung Sung-Hoon;Park Ji-Sang;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.121-124
    • /
    • 2004
  • The purpose of this study is to define the optimized layer pattern of composite wind turbine blade by using a commercial FEM program and to perform the fatigue test of T-Bolt. FEM analysis is done by using a PATRAN and ABAQUS to get a information about stress distribution ,critical deformation shape and get a critical load factor in local buckling analysis. As a result of the linear and nonlinear structural analysis, layer pattern of blade was optimized. T-Bolt is a connecting part of wind turbine blade and rotor hub, therefore T-bolt is cirtical part of wind turbine blade. T-bolt fatigue test is conducted to get a information of life cycle of T-bolt. The test is done by using a hydraulic actuator system

  • PDF

Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle (수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석)

  • Park C.;Park G. S.;Park W. G.;Yoon S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

3MW Class Offshore Wind Turbine Development (3MW급 해상풍력 발전시스템 개발)

  • Joo, Wan-Don;Lee, Jeong-Hoon;Kim, Jeong-Il;Jeong, Seok-Yong;Shin, Young-Ho;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF

A Study on the 1MW Horizontal Axis Wind Turbine Rotor Design and 3D Numerical Analysis by CFD (CFD에 의한 1MW 수평축 풍력발전용 로터 설계 및 해석에 관한 연구)

  • Kim, B. S.;Kim, Y. T.;NAM, C. D.;Kim, J. G.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.396-401
    • /
    • 2004
  • In this paper, a 1MW HAWT(FIL-1000) rotor blade has been designed by BEMT(Blade Element Momentum Theory) with Prandtl's tip loss. Also, a 3-D flow and performance analysis on the FIL-1000 rotor blade has been carried out by using the 3-D Navier-Stokes commercial solver (CFX-5.7) to provide more efficient design techniques to the large-scale HAWT engineers. The rated power and itsapproaching wind velocity at design point (TSR=7.5) are 1MW and 9.99m/s respectively. The rotor diameter is 54.5m and the rotating speed is 26.28rpm. Airfoils such as FFA W-301, DU91-W-250, DU93-W-210, NACA 63418, NACA 63415 consist of the rotor blade from hub to tip. Recent CFX version, 5.7 was adopted to simulate 3-D flow field and to analyze the performance characteristics of the rotor blade. Entire mesh node number is about 730,000 and it is generated by ICEM-CFD to achieve better mesh quality The predicted maximum power occurringat the design tip speed ratio is 931.45kW. Approaching to the root, the inflow angle becomes large, which causesthe blade to be stalled in the region. Therefore, k-$\omega$ SST turbulence model was used to predict the quantitative flow information more accurately. Application of commercial CFD code to optimum blade design and performance analysis was proved to be more effective environment to HAWT blade designers.

  • PDF