• Title/Summary/Keyword: 푸리에영역

Search Result 173, Processing Time 0.029 seconds

Study of Monitoring Parameters for Coherent Beam Combination through Fourier-domain Analysis of the Speckle Image (스펙클 이미지의 푸리에 공간 분석을 통한 결맞음 빔결합 상태 모니터링 변수 도출)

  • Park, Jaedeok;Choe, Yunjin;Yeom, Dong-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.6
    • /
    • pp.268-273
    • /
    • 2020
  • We analyze the characteristics of the coherent beam combination of lasers by monitoring the speckle pattern of the beam reflected from a scattering medium. Three collimated laser sources with high coherence are focused on a scattering target using a lens, and we then examine the speckle pattern of the returned beam in the Fourier domain. We observe that the size of the speckle pattern changes, depending on the focused-beam size or degree of spatial overlap of the three beams. Furthermore, through Fourier-domain analysis of the speckle pattern we obtain the monitoring variable to qualify the efficiency of the coherent beam combination.

Speech Recognition Model Based on CNN using Spectrogram (스펙트로그램을 이용한 CNN 음성인식 모델)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.685-692
    • /
    • 2024
  • In this paper, we propose a new CNN model to improve the recognition performance of command voice signals. This method obtains a spectrogram image after performing a short-time Fourier transform (STFT) of the input signal and improves command recognition performance through supervised learning using a CNN model. After Fourier transforming the input signal for each short-time section, a spectrogram image is obtained and multi-classification learning is performed using a CNN deep learning model. This effectively classifies commands by converting the time domain voice signal to the frequency domain to express the characteristics well and performing deep learning training using the spectrogram image for the conversion parameters. To verify the performance of the speech recognition system proposed in this study, a simulation program using Tensorflow and Keras libraries was created and a simulation experiment was performed. As a result of the experiment, it was confirmed that an accuracy of 92.5% could be obtained using the proposed deep learning algorithm.

An Application of k-domain Discrete Wavelet Transform for the Efficient Representation of Green Function (파수영역 이산 웨이블릿 변환을 이용한 효율적인 그린함수 표현에 관한 연구)

  • 주세훈;김형동
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1110-1114
    • /
    • 2001
  • The discrete wavelet concept in the k-domain is applied to efficiently represent Green function of integral equations. Application of discrete wavelet concept to Green function in the k-domain can be implemented equivalently by using spatial domain variable-sized windows. The proposed method consists of constant Q-filtering, changing the center of coordinates, and transforming spatially filtered Green functions into those in the k-domain. A mathematical expression of Green function based on the discrete wavelet concept is derived and its characteristics are discussed.

  • PDF

Estimation of target distance based on fractional Fourier transform analysis of active sonar linear frequency modulation signals (능동소나 linear frequency modulation 신호의 fractional Fourier transform 분석에 기반한 표적의 거리 추정)

  • Hyung, Sungwoong;Park, Myungho;Hwang, Soobok;Bae, Keunsung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.8-15
    • /
    • 2016
  • As a generalized form of the conventional Fourier transform, fractional Fourier transform (FrFT) can analyze a signal at intermediate domain between time and frequency domains with a transform order ${\alpha}$. Especially, FrFT has a number of advantages in the analysis of LFM (Linear Frequency Modulation) signals due to its robustness to noise. In this paper, we have proposed a new method to detect and estimate the distance of the target from the FrFT spectrum of the received echo signal. Experimental results have validated the proposed method, and shown that reliable target distance could be estimated in noise and reverberation environments.

Inverse Scattering Method Using the Moment Method in the Angular Spectral Domain (각스펙트럼 영역에서 모멘트 방법을 이용한 역산란 방법)

  • 이경수;김세윤;나정웅
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.46-55
    • /
    • 1992
  • In this paper, A spectral inversion scheme in cylinderical coordinates, appling the moment method procedure is suggested to reconstruct permittivity profiles of inhomogeneous dielectric objects. Angular spectral domain reconstruction is shown to be less sensitive to the ill-posedness due to the noise in the scattered field then the configuration reconstruction

  • PDF

Time-Domain Response of Transmission-Line Structures Excited by an External Electromagnetic Pulse (외부 전자파 펄스에 의해 여기된 전송선로 구조의 시간 영역 응답)

  • 김태현;정연춘;김세윤;박동철;배범열;박종한
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.239-245
    • /
    • 1996
  • The time-domain response of a two-conductor-structure transmission line excited by an incident electromagnetic pulse is numerically analyzed using the Finite-Difference Time-Domain (FDTD) method. The external electromagnetic pulse is generated by ultilizing a TEM cell. The simulated time-domain response is compared with the time-domain response which is obtained by the Inverse Fast Fourier Transform(IFFT) of the frequency domain measurement data.

  • PDF

Thickness assessment of tunnel concrete lining using wavelet transform (웨이블릿 변환을 이용한 터널 콘크리트 라이닝의 두께 검사법)

  • Lee, In-Mo;Cheon, Il-Soo;Hong, Eun-Soo;Lee, Joo-Gong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • To investigate the safety and stability of a concrete lining, numerous studies have been conducted over the years and several methods have been developed. Most signal processing techniques of NDT have been based on Fourier analysis. However, the application of Fourier analysis to analyze recorded vibrational signal shows results in the frequency domain only, and it is not enough to analyze transient waves precisely. In this study, Wavelet theory was employed for the analysis of non-stationary wave induced by mechanical impact on tunnel concrete lining. The Wavelet transform of transient signals provides a method for mapping the frequency spectrum as a function of time. To verify the availability of Wavelet transform as a time-frequency analysis tool, model experiments have been conducted and the thickness of the concrete lining was estimated based on the proposed theory. From this study, it was found that the contour map by Wavelet transform provides more distinct results than the power spectrum by Fourier transform and it was also found that Wavelet transform was also an effective tool for the analysis of dispersive waves in tunnel concrete linings.

  • PDF

Image Analysis for Discrimination of Neoplastic Cellis in Spatial Frequency Domain (종양세포식별을 위한 공간주파수영역에서의 화상해석)

  • 나철훈;김창원;김현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.385-396
    • /
    • 1993
  • In this paper, a improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the thyroid gland cell image, and the purpose was automatic discrimination of three classes cells(normal cell, follicular neoplastic cells, and papillary neoplastic cells) by difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a consequency of using features proposed in this paper, get a better recognition rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells, The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

Power Quality Disturbances Detection and Classification using Fast Fourier Transform and Deep Neural Network (고속 푸리에 변환 및 심층 신경망을 사용한 전력 품질 외란 감지 및 분류)

  • Senfeng Cen;Chang-Gyoon Lim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.115-126
    • /
    • 2023
  • Due to the fluctuating random and periodical nature of renewable energy generation power quality disturbances occurred more frequently in power generation transformation transmission and distribution. Various power quality disturbances may lead to equipment damage or even power outages. Therefore it is essential to detect and classify different power quality disturbances in real time automatically. The traditional PQD identification method consists of three steps: feature extraction feature selection and classification. However, the handcrafted features are imprecise in the feature selection stage, resulting in low classification accuracy. This paper proposes a deep neural architecture based on Convolution Neural Network and Long Short Term Memory combining the time and frequency domain features to recognize 16 types of Power Quality signals. The frequency-domain data were obtained from the Fast Fourier Transform which could efficiently extract the frequency-domain features. The performance in synthetic data and real 6kV power system data indicate that our proposed method generalizes well compared with other deep learning methods.

A Spectral Inverse Scattering Technique by Using the Moment Method with Series-Expanded Basis Function : Noise Effect (급수전개된 기저함수를 갖는 모멘트방법에 의한 파수영역의 역산란 방법 : 잡음의 영향)

  • 최현철;김세윤;라정웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.1
    • /
    • pp.214-223
    • /
    • 1996
  • Noise effects on image profiles reconstructed by the spectral inverse scattering technique is studied based on moment method with series-expanded basis function. It is found that the Fourier series expansion to the field distribution and the averaging of the reconstructed profile in each enlarged cell provides an effective tool for the reduction of noise effects.

  • PDF