• Title/Summary/Keyword: 표준 붓스트랩 방법

Search Result 8, Processing Time 0.02 seconds

Robust confidence interval for random coefficient autoregressive model with bootstrap method (붓스트랩 방법을 적용한 확률계수 자기회귀 모형에 대한 로버스트 구간추정)

  • Jo, Na Rae;Lim, Do Sang;Lee, Sung Duck
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2019
  • We compared the confidence intervals of estimators using various bootstrap methods for a Random Coefficient Autoregressive(RCA) model. We consider a Quasi score estimator and M-Quasi score estimator using Huber, Tukey, Andrew and Hempel functions as bounded functions, that do not have required assumption of distribution. A standard bootstrap method, percentile bootstrap method, studentized bootstrap method and hybrid bootstrap method were proposed for the estimations, respectively. In a simulation study, we compared the asymptotic confidence intervals of the Quasi score and M-Quasi score estimator with the bootstrap confidence intervals using the four bootstrap methods when the underlying distribution of the error term of the RCA model follows the normal distribution, the contaminated normal distribution and the double exponential distribution, respectively.

붓스트랩 표준편차 추정량으로 표준화한 U-통계량을 이용한 비모수적 검정법

  • 이기훈
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.221-226
    • /
    • 1995
  • 본 연구는 붓스트랩에 의한 U-통계량의 분산추정방법을 제안하고, 추정량의 일치성을 증명하였다. 결과적으로 붓스트랩 추정량으로 표준화한 U-통계량의 값이 표준정규분포에 근사함을 보였다. 또한 실제적인 비모수검정에서 이를 응용하여 검정력과 특성을 연구하였다.

  • PDF

Bootstrap estimation of the standard error of treatment effect with double propensity score adjustment (이중 성향점수 보정 방법을 이용한 처리효과 추정치의 표준오차 추정: 붓스트랩의 적용)

  • Lim, So Jung;Jung, Inkyung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.453-462
    • /
    • 2017
  • Double propensity score adjustment is an analytic solution to address bias due to incomplete matching. However, it is difficult to estimate the standard error of the estimated treatment effect when using double propensity score adjustment. In this study, we propose two bootstrap methods to estimate the standard error. The first is a simple bootstrap method that involves drawing bootstrap samples from the matched sample using the propensity score as well as estimating the standard error from the bootstrapped samples. The second is a complex bootstrap method that draws bootstrap samples first from the original sample and then applies the propensity score matching to each bootstrapped sample. We examined the performances of the two methods using simulations under various scenarios. The estimates of standard error using the complex bootstrap were closer to the empirical standard error than those using the simple bootstrap. The simple bootstrap methods tended to underestimate. In addition, the coverage rates of a 95% confidence interval using the complex bootstrap were closer to the advertised rate of 0.95. We applied the two methods to a real data example and found also that the estimate of the standard error using the simple bootstrap was smaller than that using the complex bootstrap.

On Statistical Inference of Stratified Population Mean with Bootstrap (층화모집단 평균에 대한 붓스트랩 추론)

  • Heo, Tae-Young;Lee, Doo-Ri;Cho, Joong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.405-414
    • /
    • 2012
  • In a stratified sample, the sampling frame is divided into non-overlapping groups or strata (e.g. geographical areas, age-groups, and genders). A sample is taken from each stratum, if this sample is a simple random sample it is referred to as stratified random sampling. In this paper, we study the bootstrap inference (including confidence interval) and test for a stratified population mean. We also introduce the bootstrap consistency based on limiting distribution related to the plug-in estimator of the population mean. We suggest three bootstrap confidence intervals such as standard bootstrap method, percentile bootstrap method and studentized bootstrap method. We also suggest a bootstrap test method computing the $ASL_{boot}$(Achieved Significance Level). The results of estimation are verified using simulation.

Testing for Overdispersion in a Bivariate Negative Binomial Distribution Using Bootstrap Method (이변량 음이항 모형에서 붓스트랩 방법을 이용한 과대산포에 대한 검정)

  • Jhun, Myoung-Shic;Jung, Byoung-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.2
    • /
    • pp.341-353
    • /
    • 2008
  • The bootstrap method for the score test statistic is proposed in a bivariate negative binomial distribution. The Monte Carlo study shows that the score test for testing overdispersion underestimates the nominal significance level, while the score test for "intrinsic correlation" overestimates the nominal one. To overcome this problem, we propose a bootstrap method for the score test. We find that bootstrap methods keep the significance level close to the nominal significance level for testing the hypothesis. An empirical example is provided to illustrate the results.

Minimum Chi-square estimation and the bootstrap (최소카이제곱추정과 붓스트랩)

  • 정한영;이기원;구자용
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.269-277
    • /
    • 1994
  • Bootstrap approximation is compared with ordinary asymptotic method in the context of minimum chi-square estimation through application in a real problem. Fixed interval search method is shown to be superior over a random interval search method or Newton-Raphson method. All the procedures are implemented by S-Plus functions.

  • PDF

Construction of vehicle classification estimation model from the TCS data by using bootstrap Algorithm (붓스트랩 기법을 이용한 TCS 데이터로부터 차종별 교통량 추정모형 구축)

  • 노정현;김태균;차경준;박영선;남궁성;황부연
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.39-52
    • /
    • 2002
  • Traffic data by vehicle classification is difficult for mutual exchange of data due to the different vehicle classification from each other by the data sources; as a result, application of the data is very limited. In Particular. in case of TCS vehicle classification in national highways, passenger car, van and truck are mixed in one category and the practical usage is very low. The research standardize the vehicle classification to convert other data and develop the model which can estimate national highway traffic data by the standardized vehicle classification from the raw traffic data obtained at the highway tollgates. The tollgates are categorized into several groups by their features and the model estimates traffic data by the standardized vehicle classification by using the point estimation and bootstrap algorithm. The result indicates that both of the two methods above have the significant level. When considering the bias of the extreme value by the sample size, the bootstrap algorithm is more sophisticated. Using result of this study, we is expect the usage improvement of TCS data and more specific comparison between the freeway traffic investigation and link volume on freeway using the TCS data.

Gene Selection Based on Support Vector Machine using Bootstrap (붓스트랩 방법을 활용한 SVM 기반 유전자 선택 기법)

  • Song, Seuck-Heun;Kim, Kyoung-Hee;Park, Chang-Yi;Koo, Ja-Yong
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.531-540
    • /
    • 2007
  • The recursive feature elimination for support vector machine is known to be useful in selecting relevant genes. Since the criterion for choosing relevant genes is the absolute value of a coefficient, the recursive feature elimination may suffer from a scaling problem. We propose a modified version of the recursive feature elimination algorithm using bootstrap. In our method, the criterion for determining relevant genes is the absolute value of a coefficient divided by its standard error, which accounts for statistical variability of the coefficient. Through numerical examples, we illustrate that our method is effective in gene selection.