• Title/Summary/Keyword: 표준화 연관규칙 평가기준

Search Result 2, Processing Time 0.015 seconds

Standardization for basic association measures in association rule mining (연관 규칙 마이닝에서의 평가기준 표준화 방안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.891-899
    • /
    • 2010
  • Association rule is the technique to represent the relationship between two or more items by numerical representing for the relevance of each item in vast amounts of databases, and is most being used in data mining. The basic thresholds for association rule are support, confidence, and lift. these are used to generate the association rules. We need standardization of lift because the range of lift value is different from that of support and confidence. And also we need standardization of support and confidence to compare objectively association level of antecedent variables for one descendant variable. In this paper we propose a method for standardization of association thresholds considering marginal probability for each item to grasp objectively and exactly association level, check the conditions for association criteria and then compare association thresholds with standardized association thresholds using some concrete examples.

Generally non-linear regression model containing standardized lift for association number estimation (연관성 규칙 수의 추정을 위한 일반적인 비선형 회귀모형에서의 표준화 향상도 활용 방안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.629-638
    • /
    • 2016
  • Among data mining techniques, the association rule is one of the most used in the real fields because it clearly displays the relationship between two or more items in large databases by quantifying the relationship between the items. There are three primary quality measures for association rule; support, confidence, and lift. We evaluate association rules using these measures. The approach taken in the previous literatures as to estimation of association rule number has been one of a determination function method or a regression modeling approach. In this paper, we proposed a few of non-linear regression equations useful in estimating the number of rules and also evaluated the estimated association rules using the quality measures. Furthermore we assessed their usefulness as compared to conventional regression models using the values of regression coefficients, F statistics, adjusted coefficients of determination and variation inflation factor.