• 제목/요약/키워드: 표준섭취계수 최대값

검색결과 9건 처리시간 0.038초

양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석 (Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom)

  • 진계환
    • 한국방사선학회논문지
    • /
    • 제15권7호
    • /
    • pp.935-942
    • /
    • 2021
  • 호흡에 의한 체내 장기의 불수의적 움직임은 방사선 치료 및 진단의 결과에 큰 영향을 주는 요소이다. 본 논문에서는 호흡에 따른 장기 또는 종양의 움직임을 모사하기 위한 움직임 팬텀을 제작하고 다양한 호흡모사 조건에서 18F-FDG PET 스캔 영상을 획득하여 호흡에 따른 종양의 움직임 범위와 종양의 크기에 따른 인공물의 수준 및 표준섭취계수 최대값(maximum standardized uptake value, SUVmax)를 분석하였다. 운영체계로 윈도우 CE(Windows CE) 6.0 기반으로 전동액추에이터, 전동액추에이터 포지셔닝 드라이버, PLC(Programmable Logic Controller)을 이용한 위치 및 속도 조절 모듈은 이동거리 0-5 cm와 왕복이동 10회, 15회, 20회에서 정상적으로 동작하였다. 지연시간 100분에서 구의 지름 10, 13, 17, 22, 28, 37mm일 때 각각 80.4, 99.5, 107.9, 113.1, 128.0, 124.8%로 측정되었다. 이동거리가 같을 때 호흡수에 따른 차이는 미미하였다. 호흡수를 20회 하고 이동거리를 1 cm, 2 cm, 3 cm, 5 cm일 때 구의 지름이 10, 13, 17, 22, 28, 37 mm에서 이동거리가 길어질수록 구의 크기가 작은 것 부터영상의 구분 능력이 저하되었다. 정지영상에 비하여 이동거리를 5 cm로 하였을 때, 표준섭취계수의 최대값은 구의 지름이 10, 13, 17, 22, 28, 37 mm에서 각각 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, 67.4%이었다.

PET/CT 검사에서 매개변수 입력오류에 따른 표준섭취계수 평가 (The Evaluation of SUV Variations According to the Errors of Entering Parameters in the PET-CT Examinations)

  • 김지아;홍건철;이혁;최성욱
    • 핵의학기술
    • /
    • 제18권1호
    • /
    • pp.43-48
    • /
    • 2014
  • PET/CT검사에서 표준섭취계수(standardized uptake value, SUV)는 병소의 악성 여부를 판별하는 지표로서 인체내 각 장기의 생리적인 변화에 대한 정량분석을 가능하게 한다. 따라서 그 결과에 영향을 줄 수 있는 매개변수를 올바르게 입력하는 것이 매우 중요하다. 본 연구에서는 그 매개변수 중 방사능량, 체중, 방사성 동위원소 섭취시간의 입력오류에 따른 결과의 차이를 측정하여 수용 가능한 결과의 오차범위를 평가하고자 한다. 1994 NEMA 모형 내부에 열소, 테프론, 그리고 공기 3개의 삽입물을 위치시켰다. 총 27.3 MBq의 $^{18}F$를 열소와 배후 방사능 비율이 4:1로 되도록 채우고 GE Discovery STE 16(GE Healthcare, Milwaukee, USA)로 촬영하였다. 촬영 후 입력된 방사능량, 체중, 섭취 시간의 값을 기준 값에서 ${\pm}5%$, 10%, 15%, 30%, 50% 만큼 오차를 발생시킨 후 영상을 다시 재구성하였다. 재구성된 영상에서 각 삽입물 부위에 한 개, 배후방사능 부위에 총 네 개의 관심영역을 그린 후 $SUV_{mean}$과 백분율오차를 측정하여 비교 평가하였다. 기준 영상의 열소, 테프론 그리고 공기와 배후방사능에서의 $SUV_{mean}$은 각각 4.5, 0.02, 0.1 그리고 1.0이였다. 방사능량 오차 변화에 따른 $SUV_{mean}$의 최대값과 최소값은 열소에서 9.0, 3.0, 테프론에서 0.04, 0.01, 공기에서 0.3, 0.1, 배후 방사능에서 2.0, 0.6로 변화된 값을 보였다. 이 때 백분율오차는 모두 동일하게 최대 100%에서 최소 -33%로 나타났다. 체중 오차 변화의 경우 열소에서 2.2, 6.7, 테프론에서 0.01, 0.03, 공기에서 0.09. 0.28, 배후방사능에서 0.5, 1.5로 변화된 값을 보였다. 이 때 백분율오차는 테프론의 최소 -50%, 최대 52%를 제외하고 모두 최소 -50%에서 최대 50% 로 동일하게 나타났다. 섭취시간 오차의 경우 열소에서 3.8, 5.3, 테프론에서 0.01, 0.02, 공기에서 0.1, 0.2, 배후방사능에서 0.8에서 1.2로 변화된 값을 보였다. 백분율오차는 열소와 배후방사능은 최소 -14%에서 최대 17%로 동일하게 나타났으며 테프론의 경우 최소 -11%에서 최대 21%, 공기의 경우 최소 -12%에서 최대 20%로 나타났다. 일반적으로 수용 가능한 오차의 범위를 5%로 설정할 경우, 본 실험 결과에서 방사능량과 체중의 오차가 ${\pm}5%$ 이내 일 때 $SUV_{mean}$의 오차가 5% 범위에 포함되었다. 이러한 결과들을 고려해 볼 때 검사장비에 입력되는 방사능량과 체중에 직접적인 영향을 줄 수 있는 선량검량계와 체중계의 검교정은 오차범위 5% 이내로 이루어져야 한다. 섭취 시간의 경우 삽입물의 종류에 따라 서로 다른 오차 범위를 보였으며 열소와 배후방사능에서 오차가 ${\pm}15%$ 이내일 때 $SUV_{mean}$에 5% 내의 오차가 발생하였다. 따라서 검사 시 촬영용 스캐너를 포함하여 두 개 이상의 시계를 사용할 경우 각각의 시간 오차들도 함께 고려되어야 할 것이다.

  • PDF

데이터 기반 게이팅을 이용한 PET 영상의 움직임 인공물의 정량적 비교 (Quantitative Comparison of Motion Artifacts in PET Images using Data-Based Gating)

  • 김진영;진계환
    • 한국방사선학회논문지
    • /
    • 제17권1호
    • /
    • pp.91-98
    • /
    • 2023
  • 본 논문에서는 자체 제작한 움직임 팬텀을 이용하여 다양한 호흡모사를 하고, PET/CT 장비 내의 데이터기 기반 보정프로그램을 적용하여 영상을 획득하고, 영상의 SUVmax 및 병변 부피를 분석하여 호흡에 따른 장기 또는 종양의 움직임으로 인한 인공물의 감소효과를 확인하였다. 이동거리 3 cm에서 데이터 기반 게이팅을 적용한 영상이 데이터 기반 게이팅을 적용하지 않은 영상보다 SUVmax가 팬텀 구의 지름이 10 mm, 13 mm, 17 mm, 22 mm, 28 mm, 37 mm에서 각각 2.37, 2.02, 1.44, 1.20, 0.42, 0.52 향상시키는 것으로 나타났고, 향상률로 표시하면 각각 72.5%, 73.3%, 51.3%, 25.8%, 8.6%, 7.2%이었다. 크기가 작은 병소의 SUVmax의 개선효과가 크게 나타났다. 데이터 기반 게이팅을 적용하지 않았을 때에 비하여 적용하였을 때에 1 cm, 2 cm, 3 cm에서 각각 5%, 12%, 18%의 영상의 면적이 감소하는 개선효과가 있었고, 그리고 움직임에 의한 인공물이 클 때 감소 효과도 커졌다. 데이터 기반 게이팅을 적용하면 검사절차가 간소화되고, 사술자의 피폭선량 감소효과와 더불어 호흡으로 인한 인공물을 감소시켜 영상의 질을 개선할 수 있음을 확인하였다.

호흡보정 PET/CT의 유용성에 관한 연구 (Study on the Usefulness of respiration compensation PET/CT)

  • 김기진;배석환;김가중
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2209-2213
    • /
    • 2011
  • PET/CT촬영 시 호흡에 의해 병소의 움직임으로 인한 영상의 왜곡이 발생한다. 본 연구에서는본원에서 보유하고 있는 호흡보정 Plumonary Toolkit을 이용한 폐결절부위를 영상화 함으로써 보정을 하지 않은 영상과 비교하여 SUV값의 변화와 영상의 왜곡을 어느 정도 교정할 수 있는지 실험하였다. 2008년 5월에서 8월까지 폐암을 진단받은 환자 17명을 대상으로 하였다. 실험결과 Max SUV값은 최소 4.08%에서 최대 43.10%까지의 증가율을 보였고 폐결절의 평균 Max SUV값은 6.07에서 7.00로 12.16%로 증가가 되었다. 호흡보정 PET/CT의 경우 영상의 왜곡이 개선되었다. SCC-Adenocarcinoma에서는 호흡보정 전.후에 통계적의로 유의한 수준(P<0.05)을 보였으나 SCC와 Adenocarcinom에 대한 각각의 비교에서는 유의성을 보이지 않아 Cell type과 관계없이 호흡보정에 효과가 있었다. 실험 결과Pulmonary Toolkit을 사용할 경우 표준섭취 계수값과 영상에서의 왜곡이 보정되었다. 따라서 폐암의 진단 및 추적관찰에 도움을 줄 수 있을 것이다.

$^{18}F$-FDG PET 영상의 정량적 비교: PET/MR VS PET/CT (Quantitative Comparisons in $^{18}F$-FDG PET Images: PET/MR VS PET/CT)

  • 이무석;임영현;김재환;최규오
    • 핵의학기술
    • /
    • 제16권2호
    • /
    • pp.68-80
    • /
    • 2012
  • 감쇠 보정법과 산란 보정법은 정량적인 PET검사를 하기 위한 필수적인 방법이다. PET/CT에서는 PET에서 사용하는 소멸방사선과 CT의 X선이 같은 전리 방사선이기 때문에 측정에 의한 CT의 Hounsfield Units를 감쇠 계수로 전환해서 감쇠보정, 산란보정이 가능하다. 그러나 PET/MR에서 MR는 강한 자기장을 걸어 수소밀도와 조직의 이완률차이로 되돌아오는 변화로 신호를 획득하기 때문에 CT처럼 전환하는 것은 불가능하다. Ingenuity TF PET/MR장비는 soft tissue, lung, air로 3구역을 segment하여 MR 감쇠지도를 얻는다. 이에 신호획득원리가 완전히 상이한 PET/MR과 PET/CT에 대한 정량적 평가를 하고자 한다. Phantom study로 uniform cylinder phantom에 증류수 9293 ml와 $^{18}F$-FDG 199.8 MBq를 넣고 magnetic stirrer를 이용하여 균일하게 교반한 후 60 min부터 15분 간격으로 Ingenuity TF PET/MR, Gemini TF 64, Biograph Truepoint 40를 이용하여 각각 single-bed로 2 min씩으로 영상을 얻었다. phantom의 중심부분 10개의 slice에 대한 동일한 관심영역을 그려 SUVs를 측정하고 평균, 표준편차를 구하였다. 그리고 임상적용을 위한 평가로 $^{18}F$-FDG 섭취가 정상인 환자를 대상으로 90 sec/bed씩 Ingenuity TF PET/MR을 시행한 후 Gemini TF 64 PET/CT 검사를 실시하였다. 각각의 data에서 lung, liver, spleen, bone 위치에 동일한 관심영역을 그려 SUVs 최대값과 평균값을 측정하고, %Difference를 구하였다. 또한, PET 장비들 사이에서의 일치도를 평가하기 위해 Bland-Altman plot 분석을 하였다. Phantom study에서 3가지 장비에서 측정한 SUVs 최대값과 평균값은 Biograph Truepoint 40, Gemini TF 64, Ingenuity TF PET/MR 순으로 높은 것을 확인할 수 있었다. patients study에서는 MR과 CT로 감쇠 보정한 PET장비의 SUVs 최대값과 평균값이 서로 유의미한 차이가 없었다.(p<0.05) Lung에서 left middle lobe과 transverse bone을 제외하고는 MR로 감쇠 보정한 PET의 SUVs가 대체로 낮았다. Bland Altman Plot으로 분석한 결과 대부분의 항목에서 95% 신뢰구간의 일치한계선내에서 측정되었다. PET/CT에서는 time of flight 기능을 가진 PET이 SUVs가 낮게 측정되었다. PET/MR과 PET/CT에서 알아본 SUVs차이는 MR을 이용한 분할 감쇠 보정방법이 CT를 사용한 측정 감쇠보정방법보다 SUVs가 낮게 측정되었다. 이러한 다른 감쇠 보정법에 의한 SUVs의 차이는 임상적으로는 용인할 수준에 있었지만, 향후 PET/MR와 PET/CT의 정량적인 값을 비교 분석할 때 PET 장비들간의 특성은 고려할 필요가 있다.

  • PDF

PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가 (Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT)

  • 김창현;이현국;송치옥;이기흔
    • 핵의학기술
    • /
    • 제18권2호
    • /
    • pp.22-27
    • /
    • 2014
  • PET/CT검사는 장비의 발전과 더불어 환자의 피폭을 줄이기 위하여 저 선량을 사용하는 추세에 있다. 이에 PET/CT scanner의 영상의 질을 유지하기 위하여 주입선량의 변화에 따른 적정한 bed당 획득시간을 평가하고자 한다. 모형 실험은 NEMA NU2-1994 phantom으로 hot cylinder의 농도를 3, 4.3, 5.5, 6.7 MBq/kg 으로 증가시키고 bed당 획득시간을 30 sec, 1 min, 1 min 30 sec, 2 min, 2 min 30 sec, 3 min, 3 min 30 sec, 4 min, 4 min 30sec, 5 min, 5 min 30 sec 10 min, 20 min, 30 min로 늘려가며 영상을 획득 후 hot cylinder의 농도와 배후 방사능에 4개의 ROI (Region of Interest)을 설정하고 hot cylinder의 농도 와 bed당 획득시간에 따른 변화를 최대 표준섭취계수(Standard Uptake Value maximum, $SUV_{max}$)를 측정 후 신호 대 잡음비(Signal to Noise Ratio, SNR), BKG (Background)의 표준편차를 계산하여 비교해 보았다. 또한 4.3 MBq phantom을 이용하여 검사 대기시간의 변화(15분과 1시간)에 따른 각각의 $SUV_{max}$, SNR, BKG의 표준편차를 비교하였다. 단위 질량당 방사능의 농도가 3, 4.3, 5.5, 6.7 MBq으로 증가하고 또한 각 농도의 time/bed을 1분30초에서 30분까지 늘렸을 때 hot cylinder의 $SUV_{max}$ 값은 bed당 획득시간이 각 방사능의 농도에 따라 30초에서 2분까지는 최대 18.3에서 최소 7.3까지 변화가 심했고 2분 30초에서 30분까지는 최대 8에서 최소 5.6으로 일정한 $SUV_{max}$ 값을 나타내었다. 단위 질량당 방사능의 변화에 따른 SNR은 3 MBq에서는 최소 0.41에서 최대 0.49까지 일정하였고 4.3 MBq과 5.5 MBq에서는 각각 최소 0.23, 0.39에서 최대 0.59, 0.54로 bed당 획득시간이 늘수록 상승하였다. 방사능 농도 6.7 MBq에서는 30초에서 최대 0.59로 높았지만 이후 0.43에서 0.53으로 일정하게 유지하였다. BKG (Background)의 표준편차는 3 MBq에서 2분 30초 후부터 0.38에서 0.06으로 낮아졌고 4.3 MBq과 5.5 MBq에서는 1분 30초 후부터 0.38에서 0으로 낮아졌고 6.7 MBq에서는 30초에서 30분 전 구간에서 낮은 0.33에서 0.05이었다. 4.3 MBq 팬텀으로 검사대기시간을 15분과 1시간으로 변화시킨 결과에서는 bed당 획득시간이 2분 30초부터 $SUV_{max}$값이 서로 일정한 값을 보였고 SNR은 1분 30초부터 비슷한 값을 보였다. 위 결과와 같이 단위 질량당 주입된 방사능의 농도를 3, 4.3, 5.5, 6.7 MBq으로 증가시켰을 때 bed당 획득시간이 2분 30초 이상에서는 $SUV_{max}$와 SNR의 값이 서로 일정하게 유지되고 검사 대기시간의 변화(15분과 1시간)에서도 bed당 획득시간이 2분 30초 이상에서는 $SUV_{max}$와 SNR의 값이 일정하게 유지되는 것을 알 수 있었다. 이 NEMA NU2-1994 phantom 실험의 결과에서 주입되는 방사능의 농도의 변화에도 일정한 $SUV_{max}$와 SNR의 값을 구하기 위한 최소 bed당 획득시간은 2분 30초이라는 것을 알 수 있었다. 하지만 이 획득시간은 장비의 사양과 특성에 따라 차이가 있을 수 있다.

  • PDF

Lymphoscintigraphy의 정량분석 시 오류 요인에 관한 평가 (Evaluation of Error Factors in Quantitative Analysis of Lymphoscintigraphy)

  • 연준호;김수영;최성욱;석재동
    • 핵의학기술
    • /
    • 제15권2호
    • /
    • pp.76-82
    • /
    • 2011
  • Lymphatic scintigraphy는 림프계 진단에 있어 절대표준검사로 흔히 이용되고 있으며 림프부종의 진단, 치료방침의 설정, 치료 후 평가 등에 유용한 검사이다.1) 상 하지 검사 중 하지에 부종이 있는 환자의 검사에서 무의식적인 환자의 움직임이나 1분, 1시간, 2시간 검사의 동일한 자세 유지가 되지 않을 경우 정량 분석에 영향을 주었다. GE사의 Infinia 장비를 이용하여 방사성의약품 $^{99m}Tc$-phytate 37 MBq (1.0 mCi) 4개를 2010년 6월에서 8월 사이에 내원하는 환자 40명에게 피하주사를 하여 정량 분석을 비교하였다. 환자의 발을 고정한 상태와 고정하지 않은 상태로 영상을 얻어 발의 자세 변경이 연부조직과 뼈에 의해 계측 값의 변화가 있는지 확인하였다. 또한 발의 자세 변경으로 검출기와 주사부위의 거리 변화에 따른 계측 값의 차이를 알아보기 위해 $^{99m}Tc\;600{\mu}Ci$ 점선원과 검출기와의 거리를 2 cm씩 거리를 증가시켜 5회 측정하였다. 마지막으로 $^{99m}Tc$-phytate가 림프선을 따라 이동하는 양의 차이가 정량 분석 값에 영향을 주는 지 알아보기 위해 같은 자세로 주사 후 1분, 6분 lymphatic scintigraphy 영상을 얻어 비교하였다. 주사 후 1분 검사에서 발을 고정한 상태와 고정하지 않은 상태를 비교했을 때 오차 값에 대한 편차 백분율 값은 최소 2.7%에서 최대 25.8%의 값을 얻었다. 그리고 거리 변화에 따른 계측 값은 기준 값이 평균 176,587 counts이고 2 cm 간격으로 거리를 증가시켜 측정한 결과 173,661 (2 cm), 172,095 (4 cm), 170,996 (6 cm), 167,677 (8 cm), 169,208 counts (10 cm)로 나타나 편차 백분율이 1.27, 1.79, 2.04, 2.42, 2.32%로 2.5%를 넘지 않음을 알 수 있었다. 또한, 피하주사 후 스캔까지 6분 이내에 림프선을 타고 이동한 양을 평가한 결과 최소 0.15%에서 최대 2.3%만큼 림프선을 타고 이동하였다. 이는 거리에 따른 편차 백분율 2.42%를 제외시키고 림프선에 의한 최대 변동 값인 2.3%를 제외하더라도 자세 변경으로 인한 연부조직과 bone에 의한 감소가 20%이상의 큰 차이가 나타난 것을 알 수 있다. 부종이 있는 환자의 림프 흐름을 평가하고 림프계에 의해 섭취되는 양을 정량 분석하는 lymphatic scintigraphy는 동일 환자의 1분, 1시간, 2시간 검사에서 다른 자세가 발생할 경우 뼈와 연부조직에 의한 감약으로 최대 25.8%의 차이를 나타냈으며, 통계적 검증 결과도 발을 고정한 상태와 고정하지 않은 상태는 유의한 차이를 보였다. 그리고 자세 변경으로 인한 검출기와의 거리 차이, 피하 주사 후 검사 시간까지의 차이로 인한 계수 값의 변화는 상대적으로 작지만 정량 분석 시 정확한 결과를 얻지 못하는 요인임을 알 수 있었다. 그러므로 정량 분석을 위한 lymphatic scintigraphy에서는 반드시 자세 고정을 위한 노력과 고정물 제작 활용이 선행되어야 할 것이다.

  • PDF

심해성 어류 중 메틸수은 모니터링 (Monitoring Methylmercury in Abyssal Fish)

  • 김성철;장진욱;김현아;이상호;정영지;김지연;안종훈;박은혜;고용석;김동술;김상엽;장영미;강찬순
    • 한국식품과학회지
    • /
    • 제42권4호
    • /
    • pp.383-389
    • /
    • 2010
  • 심해성 어류 등에 대한 메틸수은 기준규격 설정에 따른 사후 관리 차원의 모니터링을 실시하였다. 본 연구에 사용된 어종은 귀상어, 흑기흉상어, 곱상어, 청새리상어, 악상어, 적어, 은민대 및 체장메기 등 총 492건을 수거하여 메틸수은 함량을 조사하였다. 메틸수은 분석을 위한 분석법 타당성을 검토한 결과 GC-${\mu}ECD$의 검출한계와 정량한계는 0.002 mg/kg과 0.005 mg/kg으로 나타났으며 메틸수은의 검량선은 상관계수가 0.9992로 우수한 직선성을 보였고, 회수율은 84.2-98.5%(평균 93.4%)로 나타났다. 심해성 어류의 메틸수은 함량은 각 어종 별로 유의적인 차이가 있었으며, 메틸수은 함량[최소값-최대값(평균$\pm$표준편차), 단위: mg/kg]은 귀상어 0.157-2.009($\0.546{pm}0.311$), 청새리상어 0.211-0.878($0.501{\pm}0.154$) 및 곱상어 0.121-0.993($0.482{\pm}0.189$) 등에서 높게 나타났으며, 악상어 0.243-0.658($0.397{\pm}0.090$), 흑기흉상어 0.074-1.958($0.353{\pm}0.418$), 은민대구 0.038-0.807($0.302{\pm}0.201$) 및 적어 0.099-0.511($0.300{\pm}0.094$) 등에서는 낮은 것으로 나타났고, 체장메기의 경우 0.037-0.133($0.067{\pm}0.016$)으로 나타나 조사된 어종 중유의적으로 가장 낮은 함량을 나타내었다. 본 연구에서 조사된 심해성 어류 중 메틸수은 함량의 노출량 평가를 위해 JECFA의 PTWI와 비교 검토한 결과 상어류 0.7%, 은민대구 1.1% 및 체장 메기 0.3% 수준으로 나타났다. 또한 극단적인 노출량 평가를 위해서 어종별 메틸수은 최대 함량을 이용하여 산출한 결과도 상어류 2.9%, 은민대구 2.9% 및 체장메기 0.6% 수준으로 나타나 심해성 어류의 섭취로 인한 메틸수은 노출량은 안전한 수준인 것으로 판단된다.

PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화 (The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition)

  • 홍건철;박선명;곽인석;이혁;최춘기;석재동
    • 핵의학기술
    • /
    • 제14권1호
    • /
    • pp.13-17
    • /
    • 2010
  • PVE는 PET/CT 3D 영상 획득에서 발생되는 것으로 평가값이 저평가되어 영상의 정확도를 떨어뜨리는 현상이다. 특히 이는 병소의 크기가 작고 분해능이 저하될수록 더 큰 오차를 초래하여 검사 결과에 영향을 줄 수 있다. 본 연구는 PVE에 영향을 줄 수 있는 매개변수의 변화를 이용하여 최적의 영상 재구성법을 알아보고자 한다. GE Discovery STE16 장비에서 NEMA 2001 IEC phantom을 이용하여 각기 다른 크기의 구체(직경 37, 28, 22, 17, 13, 10 mm)에 $^{18}F$-FDG를 열소와 배후방사능비 4:1로 주입하여 10분간 영상을 획득하였다. 재구성은 반복재구성법(iterative reconstruction)을 사용하였으며, 반복 횟수(iteration) 2~50회, 부분집합 수(subset number) 1~56개로 변화를 주었다. 분석은 영상의 구체부분에 관심영역(ROI)을 설정하고 최대 표준섭취계수($SUV_{max}$)를 이용하여 백분율 차이(% difference)와 신호대잡음비(SNR)를 산출하였다. 반복 횟수 2, 6, 13, 30, 50회 변화를 준 10 mm 구체의 $SUV_{max}$는 2.32, 3.60, 3.88, 3.88, 3.90이고, SNR은 0.36, 0.49, 0.47, 0.43, 0.41이었으며, 백분율 차이는 58.9, 38.5, 34.8, 35.7, 35.4%로 측정되었다. 또한 6회로 고정한 반복 횟수에 2, 5, 8, 20, 56으로 부분집합 수를 변화시킨 평균 $SUV_{max}$는 10mm의 구체에서 1.46, 3.10, 3.10, 3.48, 3.78로 측정되었으며, SNR은 0.19, 0.30, 0.40, 0.48, 0.45로 나타났다. 또한 각 구체의 SNR의 합은 2.73, 3.38, 3.64, 3.63, 3.38로 측정되었다. 반복 횟수 6회부터 20회까지는 평균 백분율 차이($73{\pm}1%$)와 평균 SNR ($3.47{\pm}0.09$)은 비슷한 값을 나타내었으며, 20회 이상에서는 noise의 영향으로 SUV가 저평가되는 현상이 증가하였다. 또한 동일한 반복 횟수의 경우에 부분집합 값의 변화에서 SNR은 8회부터 20회가 높은 구간($3.63{\pm}0.002$)으로 나타났다. 따라서 작은 병소의 PVE를 줄이기 위해서는 재구성 시간을 고려하여 반복 횟수 6회, 부분집합 수 8~20회에서 PVE를 가장 저감할 수 있다.

  • PDF