• 제목/요약/키워드: 표준모델

검색결과 3,113건 처리시간 0.028초

천식 환자에서 $M_2$ 무스카린성 수용체 기능에 관한 연구 (Function of the Neuronal $M_2$ Muscarinic Receptor in Asthmatic Patients)

  • 권영환;이상엽;박상면;이신형;신철;조재연;심재정;강경호;유세화;인광호
    • Tuberculosis and Respiratory Diseases
    • /
    • 제49권4호
    • /
    • pp.486-494
    • /
    • 2000
  • 연구배경 : 부교감 신경의 자극에 의해 유발된 기관지 수축은 $M_2$ 무스카린성 수용체(muscarinic receptors)에 의해 억제된다. 기관지 과민성을 유발시킨 동물 모델에서는 아세틸콜린 분비를 억제하는 $M_2$ 무스카린성 수용체 기능이 손상되어 아세틸콜린의 분비가 증가되고, 이로 인해 기관지 과민성을 나타낸다. 본 연구에서는 경증, 중등증, 중증 천식 환자를 대상으로 $M_2$ 무스카린성 수용체 기능 이상이 있는지 여부와 천식의 중증도에 따라 $M_2$ 무스카린성 수용체 기능에 차이가 있는지를 알아보고자 연구를 시행하였다. 대상 및 방법 : 고려대학교 안암병원 내과에서 천식으로 진단 받은 27명을 대상으로 하였다. 이 중 경증 천식이 11명, 중등증 천식이 8명, 중증 천식 8명이었다. 천식 발작이 있거나, 2주 이내에 상기도 감염이 있는 환자, 메타콜린 유발 검사에서 음성($PC_{20}{\geq}$16mg/ml)인 환자는 제외하였다. 대상 환자들은 메타콜린 유발 검사를 시행하여 $PC_{20}$을 구하고, 1주일 후에 $M_2$ 무스카린성 수용체 촉진제(agonist) 인 필로카핀(pilocarpine) $180{\mu}g$을 흡입한 후 1차 때와 같은 방법으로 $PC_{20}$을 구해 두 값을 비교하였다. 결과 : 대상 환자의 평균 연령은 39.3$\pm$12.3세였다. 천식의 중증도에 따라 결과를 분석해 보면 경증 천식 환자는 필로카핀 흡입 전 $PC_{20}$은 5.30$\pm$5.23mg/ml(평균$\pm$표준편차)에서 필로카핀 흡입 후 20.82$\pm$22.56mg/ml이었으며(p=0.004), 중등증 천식 환자는 필로카핀 흡입 전 $PC_{20}$은 2.79$\pm$1.51mg/ml에서 필로카핀 흡입 후 4.67$\pm$3.53mg/ml(p=0.012)로 유의하게 증가하였다. 이는 필로카핀에 대한 $M_2$ 무스카린성 수용체 기능이 정상임을 말해준다. 그러나 중증 천식 환자는 필로카핀 흡입 전 $PC_{20}$은 1.76$\pm$1.50mg/ml에서 필로카핀 흡입 후 3.18$\pm$4.03mg/ml(p=0.161)로 필로카핀 흡입 후에 통계적으로 유의한 차이가 없었다. 이는 중증 천식에서는$M_2$ 무스카린성 수용체 기능 이상이 있음을 말해준다. 결론 : 경증, 중등증, 중증을 대상으로 $M_2$ 무스카린성 수용체 기능을 조사해본 결과 경증과 중등증 천식에서는 $M_2$ 무스카린성 수용체 기능 이상이 없었고, 중증 천식에서는 $M_2$ 무스카린성 수용체 기능 이상이 있었다. 이는 천식의 중증도에 따라 $M_2$ 무스카린성 수용체 기능에 차이가 있음을 말해준다.

  • PDF

소유역단위 화강암/편마암 기원 토양 연접군(catena)에 따른 토양 유실 평가 (Assessment of Soil Loss Estimated by Soil Catena Originated from Granite and Gneiss in Catchment)

  • 허승오;손연규;정강호;박찬원;이현행;하상건;김정규
    • 한국토양비료학회지
    • /
    • 제40권5호
    • /
    • pp.383-391
    • /
    • 2007
  • 수계 내 농경지로부터의 비점오염은 토양유실과 밀접한 관련이 있어 토양침식 정도를 산정하는 것은 비점오염 관리의 기초가 될 수 있으며 환경오염 예측모델의 정도 향상에도 도움이 될 것이다. 본 연구는 표준유역단위인 소유역에서 토양연접군에 따라 소유역을 분류하고 소유역별로 토양침식 위험성을 산정해 통합적 수계관리의 방향을 제시하고자 수행하였다. 건설교통부 소유역 분류에서 토양조사가 되어 있는 10개의 소유역을 선정해 토양연접군에 따른 분류를 통해 금강본류 21, 남강 03, 동진천, 가평천 01, 경안천 02 소유역은 편마암 유래토양이 50% 이상을 차지하는 편마암 유래토양 소유역 그룹으로 분류되었고, 금강본류 16, 병성천 01, 대신천, 북천 02, 영상강 본류 08 소유역은 화강암 유래토양 면적이 60% 이상인 화강암 유래토양 소유역 그룹으로 분류되었다. 대상유역의 경지이용 형태는 편마암 유래토양이 주로 분포하고 있는 소유역 그룹에서 화강암 유래토양이 주로 분포하는 소유역보다 산림의 면적비율이 높게 나타났고 밭의 분포면적 비율이 그다지 높지 않은 것을 보여주었다. 또한 토양도 상의 경사도 분포는 편마암 유래토양이 주로 있는 소유역에서는 산림면적이 많은 관계로 경사 60% 이상인 E와 F slope이 많았고 화강암 유래토양이 주로 분포하는 소유역에서는 대부분의 유역이 경사도에 따라 고르게 분포하는 경향이었다. 각각의 소유역별 토양유실량 산정에 따른 면적별 분포는 산림이 포함된 관계로 편마암이나 화강암 유래토양 대부분에서 A나 B 등급이 많았으나 전체적으로는 편마암 유래토양이 주가 되는 소유역은 B와 C 등급이 많이 분포하고 있었으며, 화강암 유래토양이 주가 되는 소유역에서는 영산강 08을 제외하면 A와 B 등급에 많이 분포하고 있었다. 산림을 제외하는 경우에는 전체적으로 토양유실 등급의 면적분포가 A 등급이 많아졌고 편마암 유래토양 소유역에서 상대적으로 G 등급의 면적분포가 상승하고 등급별 분포가 고르게 되었다. 소유역에서 경지이용형태별 토양유실량은 논이 가장 작은 값을 보였고, 다음이 산림이었으며 제일 큰 토양유실량을 보인 것은 밭이었다. 토양유실량 산정에 따른 토양연접군별 소유역단위 특성을 살펴보면 송산지곡 연접군으로 분류할 수 있는 편마암 유래토양이 주로 분포하고 있는 소유역들의 연간 평균 토양유실량은 $7.66ton\;ha^{-1}\;yr^{-1}$이었고, 삼각상주 연접군으로 분류되는 금강본류 16, 병성천 01, 대신천, 북천 02 소유역의 평균 토양유실량은 $5.55ton\;ha^{-1}\;yr^{-1}$이었다. 송정백산 연접군으로 분류할 수 있는 영산강 08 소유역의 토양유실량은 $9.6ton\;ha^{-1}\;yr^{-1}$ 이었으나 이 연접 소유역군은 다른 소유역군들처럼 더 많은 분류가 있어야 평균 토양유실량을 산정할 수 있을 것으로 여겨진다. 이런 결과로 보아 토양연접군에 따른 소유역의 분류와 유역그룹별 토양유실량을 산정하면 토양연접군별 소유역그룹의 비점오염 기여도를 파악할 수 있을 것으로 보이며, 이에 따라 다양한 수문 환경 모형들의 적용성을 확대시켜 수계 내 수질 관리의 효율성을 향상시킬 수 있을 것이다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.