• 제목/요약/키워드: 표정특징추출

검색결과 105건 처리시간 0.024초

동영상 기반 감정인식을 위한 DNN 구조 (Deep Neural Network Architecture for Video - based Facial Expression Recognition)

  • 이민규;최준호;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 하계학술대회
    • /
    • pp.35-37
    • /
    • 2019
  • 최근 딥 러닝의 급격한 발전과 함께 얼굴표정인식 기술이 상당한 진보를 이루었다. 그러나 기존 얼굴표정인식 기법들은 제한된 환경에서 취득한 인위적인 동영상에 대해 주로 개발되었기 때문에 실제 wild 한 환경에서 취득한 동영상에 대해 강인하게 동작하지 않을 수 있다. 이런 문제를 해결하기 위해 3D CNN, 2D CNN 그리고 RNN 의 새로운 결합으로 이루어진 Deep neural network 구조를 제안한다. 제안 네트워크는 주어진 동영상으로부터 두 가지 서로 다른 CNN 을 통해서 영상 내 공간적 정보뿐만 아니라 시간적 정보를 담고 있는 특징 벡터를 추출할 수 있다. 그 다음, RNN 이 시간 도메인 학습을 수행할 뿐만 아니라 상기 네트워크들에서 추출된 특징 벡터들을 융합한다. 상기 기술들이 유기적으로 연동하는 제안된 네트워크는 대표적인 wild 한 공인 데이터세트인 AFEW 로 실험한 결과 49.6%의 정확도로 종래 기법 대비 향상된 성능을 보인다.

  • PDF

흑백 색상 정보 특징을 이용한 얼굴 인식 시스템 (Face Recognition System Using Gray Color Features)

  • 이현순;오동수;유관우
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.583-585
    • /
    • 2002
  • 얼굴 인식은 이미지에 대한 많은 변화(표정, 조명, 얼굴의 방향)로 인해 높은 인식률을 얻기 어렵다. 이 문제를 해결하기 위해, 여러 가지의 얼굴 인식에 관한 방법이 연구되었다. 본 논문은 윤곽선이 검출된 흑백 이미지에서 명암 정보를 이용하여 특징을 추출한 얼굴 인식 시스템을 구현한다. 얼굴 방향에 대해 제약조건을 지닌 정면의 얼굴 이미지에서 소벨 마스크(Sobel Mask)를 이용하여 추출한 윤곽선 이미지를 일정한 크기의 영역들을 구성하여 특징벡터를 생성한다. 생성된 특징벡터를 이용하여 빠른 속도로 얼굴의 특징을 추출하여 개인 정보를 생성할 수 있다. 개인 정보를 가지고 SVM(Support Vector Machine)을 이용하여 일대일 대응에서 인증을 실험한다. 이 시스템은 기하학적 특성 추출 방법보다 계산량이 적고, 높은 인식률을 보여준다.

  • PDF

1차 모멘트와 주요성분분석을 이용한 얼굴표정 인식 (Recognizing Facial Expression Using 1-order Moment and Principal Component Analysis)

  • 조용현;홍성준
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.405-408
    • /
    • 2006
  • 본 논문에서는 영상의 1차 모멘트와 주요성분분석을 이용한 효율적인 얼굴표정 인식방법을 제안하였다. 여기서 1차 모멘트는 영상의 중심이동을 위한 전처리 과정으로 인식에 불필요한 배경의 배제와 계산시간의 감소로 인식성능을 개선하기 위함이다. 또한 주요성분분석은 얼굴표정의 특징인 고유영상을 추출하는 것으로, 이는 2차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 각각 320*243 픽셀의 48개(4명*6장*2그룹) 얼굴표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과 전처리를 수행하지 않는 기존 방법보다 우수한 인식성능이 있음을 확인하였다.

  • PDF

중심이동과 독립성분분석에 의한 얼굴표정 인식 (Recognizing Facial Expression Using Centroid Shift and Independent Component Analysis)

  • 조용현;홍성준;박용수
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.401-404
    • /
    • 2006
  • 본 논문에서는 영상의 중심이동과 독립성분분석에 의한 효율적인 표정 인식방법을 제안하였다. 여기서 중심이동은 얼굴영상의 1차 모멘트에 의한 전처리 과정으로 불필요한 배경을 배제시켜 계산시간의 감소 및 인식률을 개선하기 위함이다. 또한 독립성분분석은 얼굴표정의 특징으로 기저영상을 추출하는 것으로 고차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 320*243 픽셀의 48개(4명*6장*2그룹) 표정을 대상으로 Euclidean 분류척도를 이용하여 실험한 결과, 전처리를 수행치 않는 기존방법에 비해 우수한 인식성능이 있음을 확인하였다.

  • PDF

비전 기반의 감정인식 로봇 개발 (Development of Vision based Emotion Recognition Robot)

  • 박상성;김정년;안동규;김재연;장동식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.670-672
    • /
    • 2005
  • 본 논문은 비전을 기반으로 한 감정인식 로봇에 관한 논문이다. 피부스킨칼라와 얼굴의 기하학적 정보를 이용한 얼굴검출과 감정인식 알고리즘을 제안하고, 개발한 로봇 시스템을 설명한다. 얼굴 검출은 RGB 칼라 공간을 CIElab칼라 공간으로 변환하여, 피부스킨 후보영역을 추출하고, Face Filter로 얼굴의 기하학적 상관관계를 통하여 얼굴을 검출한다. 기하학적인 특징을 이용하여 눈, 코, 입의 위치를 판별하여 표정 인식의 기본 데이터로 활용한다. 눈썹과 입의 영역에 감정 인식 윈도우를 적용하여, 윈도우 내에서의 픽셀값의 변화와 크기의 변화로 감정인식의 특징 칼을 추출한다. 추출된 값은 실험에 의해서 미리 구해진 샘플과 비교를 통해 강정을 표현하고, 표현된 감정은 Serial Communication을 통하여 로봇에 전달되고, 감정 데이터를 받은 얼굴에 장착되어 있는 모터를 통해 표정을 표현한다.

  • PDF

이동로봇에서의 2D얼굴 영상을 이용한 사용자의 감정인식 (Emotion Recognition of User using 2D Face Image in the Mobile Robot)

  • 이동훈;서상욱;고광은;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.131-134
    • /
    • 2006
  • 본 논문에서는 가정용 로봇 및 서비스 로봇과 같은 이동로봇에서 사용자의 감정을 인식하는 방법중 한가지인 얼굴영상을 이용한 감정인식 방법을 제안한다. 얼굴영상인식을 위하여 얼굴의 여러 가지 특징(눈썹, 눈, 코, 입)의 움직임 및 위치를 이용하며, 이동로봇에서 움직이는 사용자를 인식하기 위한 움직임 추적 알고리즘을 구현하고, 획득된 사용자의 영상에서 얼굴영역 검출 알고리즘을 사용하여 얼굴 영역을 제외한 손과 배경 영상의 피부색은 제거한다. 검출된 얼굴영역의 거리에 따른 영상 확대 및 축소, 얼굴 각도에 따른 영상 회전변환 등의 정규화 작업을 거친 후 이동 로봇에서는 항상 고정된 크기의 얼굴 영상을 획득 할 수 있도록 한다. 또한 기존의 특징점 추출이나 히스토그램을 이용한 감정인식 방법을 혼합하여 인간의 감성 인식 시스템을 모방한 로봇에서의 감정인식을 수행한다. 본 논문에서는 이러한 다중 특징점 추출 방식을 통하여 이동로봇에서의 얼굴 영상을 이용한 사용자의 감정인식 시스템을 제안한다.

  • PDF

눈영역 추출과 개폐상태 인식에 관한 연구 (A Study on The Extraction of the Region and The Recognition of The State of Eyes)

  • 김도형;이학만;박재현;차의영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.532-534
    • /
    • 2001
  • 본 논문에서는 다양한 배경을 가지는 얼굴 영상에서 눈의 위치를 추출하고 누의 개폐 상태를 인식하는 방법에 대하여 제시한다. 얼굴 요소 중에서 눈은 얼굴 인식 분야에 있어서 주요한 특징을 나타내는 주 요소이며, 눈의 개폐 상태 인식은 인간의 물리적, 생체적 신호 감지 및 표정인식에도 유용하게 사용될 수 있다. 본 논문에서는 후부영역을 강조하기 위한 전처리 과정을 수행하고 템플릿 매칭 방법을 사용하여 후부 영역을 추출한다. 추출된 1차 후부 영역들은 설정된 병합식을 사용하여 병합되며, 기하학적 사전지식과 Matching Value를 기반으로 최종 눈후보 영역을 추출한다. 검출된 눈 후보 영역은 검출영역 전처리와 특징점 산출 과정을 거쳐 최종적으로 개폐 판별식을 통해 눈의 개폐상태를 인식하게 된다. 제안한 방법은 눈위치 추출과 개폐인식에서 모두 높은 인식률을 보였으며 향후 운전자의 졸음인식 및 환자 감시장치 등 여러 응용에서 사용될 수 있다.

  • PDF

Multiple Active Appearance Model을 이용한 얼굴 특징 추출 기법 (Facial Feature Extraction using Multiple Active Appearance Model)

  • 박현준;김광백;차의영
    • 한국전자통신학회논문지
    • /
    • 제8권8호
    • /
    • pp.1201-1206
    • /
    • 2013
  • 영상에서 얼굴 및 얼굴 특징을 추출하기 위한 기법으로 active appearance model(AAM)이 있다. 본 논문에서는 두 개의 AAM을 이용하여 얼굴 특징을 추출하는 multiple active appearance model(MAAM) 기법을 제안한다. 두 개의 AAM은 학습 데이터에 대한 파라미터를 조절하여 상반되는 장단점을 가지도록 생성하고, 서로의 단점을 보완할 수 있도록 한다. 제안된 방법의 성능을 평가하기 위해 100장의 영상에 대해서 얼굴 특징추출 실험을 하였다. 실험 결과 기존의 AAM 하나만을 사용하는 기법에 비해 적은 횟수의 피팅만으로도 정확도 높은 결과를 얻을 수 있었다.

조명 변화에 견고한 얼굴 특징 추출 (Robust Extraction of Facial Features under Illumination Variations)

  • 정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 얼굴 분석은 얼굴 인식 머리 움직임과 얼굴 표정을 이용한 인간과 컴퓨터사이의 인터페이스, 모델 기반 코딩, 가상현실 등 많은 응용 분야에서 유용하게 활용된다. 이러한 응용 분야에서는 얼굴의 특징점들을 정확하게 추출해야 한다. 본 논문에서는 눈, 눈썹, 입술의 코너와 같은 얼굴 특징을 자동으로 추출하는 방법을 제안한다. 먼저, 입력 영상으로부터 AdaBoost 기반의 객체 검출 기법을 이용하여 얼굴 영역을 추출한다. 그 다음에는 계곡 에너지. 명도 에너지, 경계선 에너지의 세 가지 특징 에너지를 계산하여 결합한다. 구해진 특징 에너지 영상에 대하여 에너지 값이 큰 수평 방향향의 사각형을 탐색함으로써 특징 영역을 검출한다. 마지막으로 특징 영역의 가장자리 부분에서 코너 검출 알고리즘을 적용함으로써 눈, 눈썹, 입술의 코너를 검출한다. 본 논문에서 제안된 얼굴 특징 추출 방법은 세 가지의 특징 에너지를 결합하여 사용하고 계곡 에너지와 명도 에너지의 계산이 조명 변화에 적응적인 특성을 갖도록 함으로써, 다양한 환경 조건하에서 견고하게 얼굴 특징을 추출할 수 있다.

  • PDF

Advanced AAM 기반 정서특징 검출 기법 개발 (Development of Emotional Feature Extraction Method based on Advanced AAM)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.834-839
    • /
    • 2009
  • 지능로봇시스템과 같은 HCI 환경에서 사람의 감정을 인식하기 위한 매개정보인 얼굴영상 기반 정서특징 검출문제는 관련분야의 매우 중요한 이슈이다. 본 논문에서는 보편화된 시스템 기반에서 임의의 사용자에 대한 정서 인식을 수행하기 위해 사람의 얼굴에서 나타나는 최적의 정서특징을 가장 효율적으로 추출하기 위한 연구로서 본 연구실에서 기존에 제안한 FACS와 AAM을 이용한 Bayesian Network 기반 얼굴표정 인식 시스템을 보완한 Advanced AAM을 기반 얼굴영상 정서 특징을 검출 시스템에 대한 연구를 진행하였다. 이를 수행하기 위하여 정규화된 이미지에서의 Statistical Shape Analysis로서 Advanced AAM과 얼굴 표정 분석 시스템인 FACS를 이용하여, 임의의 사용자에 대한 자동적인 정서특징 검출이 가능하도록 연구를 진행하였다.