• Title/Summary/Keyword: 표정특징추출

검색결과 105건 처리시간 0.564초

다선형 모델을 이용한 얼굴 및 표정 인식 (A Case Study on Face and Expression Recognition using AAMs and Multilinear Analysis)

  • 박용찬;이성오;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1901-1902
    • /
    • 2008
  • 얼굴 인식은 얼굴의 특징적인 패턴을 이용하지만, 이러한 패턴은 표정, 포즈, 조명의 변화에 민감하여 인식에 어려움이 있다. 본 논문은 표정 변화에 강인한 인식 모델을 개발하기 위해 Cohn-Kanade 표정 데이터베이스와 AAM을 이용하여 다양한 데이터를 추출하였고, 추출된 데이터를 다선형 분석을 이용하여 분석하였다. 이를 적용한 인식 실험에서 PCA보다 표정에 좀 더 강인한 인식 성능을 나타내었다.

  • PDF

자세와 표정변화에 강인한 얼굴 특징 검출 (Robust Face Feature Extraction for various Pose and Expression)

  • 정재윤;정진권;조성원;김재민
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.294-298
    • /
    • 2005
  • 바이오메트릭스의 여러 가지 기술 중에서 얼굴인식은 지문인식, 손금인식, 홍채인식 등과는 달리 신체의 일부를 접촉시키지 않고도 원거리에 설치된 카메라를 통해 사람을 확인할 수 있는 장점을 가지고 있다. 그러나 얼굴인식은 조명변화, 표정변화 둥의 다양한 환경변화에 대단히 민감하게 반응하므로 얼굴의 특징 영역에 대한 정확한 추출이 반드시 선행되어야 한다. 얼굴의 주요 특징인 눈, 코, 입, 눈썹은 자세와 표정 그리고 생김새에 따라 다양한 위치, 크기, 형태를 가질 수 있다. 본 연구에서는 변화하는 특징 영역과 특징 점을 정확히 추출하기 위하여 얼굴을 9가지 방향으로 분류하고, 각 분류된 방향에서 특징 영역을 통계적인 형태에 따라 다시 2차로 분류하여, 각각의 형태에 대한 표준 템플릿을 생성하여 검출하는 방법을 제안한다.

  • PDF

주색상과 특징점을 이용한 애니메이션 캐릭터의 표정인식 (Recognition of Facial Expressions of Animation Characters Using Dominant Colors and Feature Points)

  • 장석우;김계영;나현숙
    • 정보처리학회논문지B
    • /
    • 제18B권6호
    • /
    • pp.375-384
    • /
    • 2011
  • 본 논문에서는 사람의 표정이 아닌 애니메이션 캐릭터의 표정을 주색상과 특징점을 효과적으로 분석하여 인식하는 방법을 제안한다. 제안된 방법에서는 먼저 캐릭터의 특성에 맞게 간략화한 메쉬모델을 정의하고 캐릭터 얼굴과 얼굴의 구성요소를 주색상을 이용하여 검출한 후 각 구성요소의 에지를 활용하여 표정인식을 위한 특징점을 추출한다. 그런 다음, 각 특징점의 위치와 모양 정보를 신경망 학습을 통해 해당 AU로 분류하고, 제안된 표정 AU 명세서를 이용해 최종적으로 표정을 인식한다. 실험에서는 제안된 애니메이션 캐릭터의 표정인식 방법이 무표정을 포함하여 기쁨, 슬픔, 놀람, 화남, 공포의 6가지 표정을 비교적 신뢰성 있게 인식함을 애니메이션 영상을 이용한 실험을 통해 보여준다.

비전 기반 3차원 얼굴 모델의 실시간 표정 제어 (Real-time Expression Control of Vision Based 3 Dimensional Face Model)

  • 김정기;민경필;전준철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.748-750
    • /
    • 2004
  • 본 논문은 연속적으로 입력되는 2차원 얼굴 영상에서 얼굴의 특징 영역들을 추출하여 3차원 얼굴 모델의 표정을 실시간으로 제어하는 방법에 관한 연구이다. 2차원 얼굴 영상에서 얼굴을 추출하기 위해 Hue, Saturation 색상 값을 사용하며, 두 가지 색상 값을 이용하여 피부색과 배경색을 분리함으로써 얼굴 영역을 추출 할 수 있다. 추출 된 얼굴에서 특징 영역인 눈 코, 입술 영역 등의 일지를 각각의 영역에 적합한 추출 방법을 이용하여 추출한 뒤, 프레임 별로 영역들의 움직임을 비교함으로써 영역의 움직임 정보를 획득 할 수 있다. 이 정보를 3차원 얼굴 모델에 적용하여 2차원 동영상에서 획득된 대상의 얼굴의 표정을 3차원 얼굴 모델에 실시간으로 표현 할 수 있도록 한다.

  • PDF

중립표정에 무관한 얼굴표정 인식 (Facial Expression Recognition without Neutral Expressions)

  • 신영숙
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.301-303
    • /
    • 2006
  • 본 논문은 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며, 단위분산값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 하였다. 본 실험 결과는 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들의 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정인식을 가능하게 하였다.

  • PDF

모델기반 특징추출을 이용한 지역변화 특성에 따른 개체기반 표정인식 (Facial Expression Recognition with Instance-based Learning Based on Regional-Variation Characteristics Using Models-based Feature Extraction)

  • 박미애;고재필
    • 한국멀티미디어학회논문지
    • /
    • 제9권11호
    • /
    • pp.1465-1473
    • /
    • 2006
  • 본 논문에서는 Active Shape Models(ASM)과 상태기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제시한다. ASM을 이용하여 하나의 입력 영상에 대한 얼굴요소특징점들을 정합하고, 그 과정에서 생성되는 모양변수벡터를 추출한다. 동영상에 대해 추출되는 모양변수벡터 집합을 세 가지 상태 중 한 가지를 가지는 상태벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 표정별 표정변화에 따른 변화영역의 차이를 고려한 새로운 유사도 측정치를 제안한다. 공개데이터베이스 KCFD에 대한 실험에서는 제안한 측정치와 기존의 이친 측정치를 사용한 k-NN의 인식률이 k가 1일 때 각각 89.1% 및 86.2%을 보임으로써, 제안한 측정치가 기존의 이진 측정치보다 더 높은 인식률을 나타내는 것을 보인다.

  • PDF

PCA와 템플릿 정합을 사용한 눈 및 입 영상 기반 얼굴 표정 인식 (Eye and Mouth Images Based Facial Expressions Recognition Using PCA and Template Matching)

  • 우효정;이슬기;김동우;유성필;안재형
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.7-15
    • /
    • 2014
  • 본 연구는 PCA와 템플릿 정합을 사용한 얼굴 표정 인식 알고리즘을 제안한다. 먼저 얼굴 영상은 Haar-like feature의 특징 마스크를 사용하여 획득한다. 획득한 얼굴 영상은 눈과 눈썹을 포함하고 있는 얼굴 상위 부분과 입과 턱을 포함하고 있는 얼굴 하위 부분으로 분리하여 얼굴 요소 추출에 용이하게 나눈다. 얼굴 요소 추출은 눈 영상과 입 영상을 추출하는 과정으로 먼저 학습영상으로 PCA를 거쳐 생성된 고유얼굴을 구한다. 고유 얼굴에서 고유 입과 고유 눈을 획득하고, 이를 얼굴 분리 영상과 템플릿 매칭시켜 얼굴요소를 추출한다. 얼굴 요소는 눈과 입이 있으며 두 요소의 기하학적 특징으로 표정을 인식한다. 컴퓨터 모의실험 결과에 따르면 제안한 방법이 기존의 방법보다 추출률이 우수하게 나왔으며, 특히 입 요소의 추출률은 99%에 달하였다. 또 이 얼굴 요소 추출 방법을 표정인식에 적용하였을 때 놀람, 화남, 행복의 3가지 표정의 인식률이 80%를 상회하였다.

2차원 영상 기반 3차원 개인 얼굴 모델 생성 및 애니메이션 (2D Image-Based Individual 3D Face Model Generation and Animation)

  • 김진우;고한석;김형곤;안상철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1999년도 학술대회
    • /
    • pp.15-20
    • /
    • 1999
  • 본 논문에서는 사람의 정면 얼굴을 찍은 컬러 동영상에서 얼굴의 각 구성 요소에 대한 특징점들을 추출하여 3차원 개인 얼굴 모델을 생성하고 이를 얼굴의 표정 움직임에 따라 애니메이션 하는 방법을 제시한다. 제안된 방법은 얼굴의 정면만을 촬영하도록 고안된 헬멧형 카메라( Head-mounted camera)를 사용하여 얻은 2차원 동영상의 첫 프레임(frame)으로부터 얼굴의 특징점들을 추출하고 이들과 3차원 일반 얼굴 모델을 바탕으로 3차원 얼굴 특징점들의 좌표를 산출한다. 표정의 변화는 초기 영상의 특징점 위치와 이 후 영상들에서의 특징점 위치의 차이를 기반으로 알아낼 수 있다. 추출된 특징점 및 얼굴 움직임은 보다 다양한 응용 이 가능하도록 최근 1단계 표준이 마무리된 MPEG-4 SNHC의 FDP(Facial Definition Parameters)와FAP(Facial Animation Parameters)의 형식으로 표현되며 이를 이용하여 개인 얼굴 모델 및 애니메이션을 수행하였다. 제안된 방법은 단일 카메라로부터 촬영되는 영상을 기반으로 이루어지는 MPEG-4 기반 화상 통신이나 화상 회의 시스템 등에 유용하게 사용될 수 있다.

  • PDF

컬러 정보를 이용한 실시간 표정 데이터 추적 시스템 (Realtime Facial Expression Data Tracking System using Color Information)

  • 이윤정;김영봉
    • 한국콘텐츠학회논문지
    • /
    • 제9권7호
    • /
    • pp.159-170
    • /
    • 2009
  • 온라인 기반의 3차원 얼굴 애니메이션을 위해서 실시간으로 얼굴을 캡처하고 표정 데이터를 추출하는 것은 매우 중요한 작업이다. 최근 동영상 입력을 통해 연기자의 표정을 캡처하고 그것을 그대로 3차원 얼굴 모델에 표현하는 비전 기반(vision-based) 방법들에 대한 연구가 활발히 이루어지고 있다. 본 논문 에서는 실시간으로 입력되는 동영상으로부터 얼굴과 얼굴 특징점들을 자동으로 검출하고 이를 추적하는 시스템을 제안한다. 제안 시스템은 얼굴 검출과 얼굴 특징점 추출 및 추적과정으로 구성된다. 얼굴 검출은 3차원 YCbCr 피부 색상 모델을 이용하여 피부 영역을 분리하고 Harr 기반 검출기를 이용해 얼굴 여부를 판단한다. 얼굴 표정에 영향을 주는 눈과 입 영역의 검출은 밝기 정보와 특정 영역의 고유한 색상 정보를 이용한다. 검출된 눈과 입 영역에서 MPEG-4에서 정의한 FAP를 기준으로 10개의 특징점을 추출하고, 컬러 확률 분포의 추적을 통해 연속 프레임에서 특징점들의 변위를 구한다 실험 결과 제안 시스템 은 약 초당 8 프레임으로 표정 데이터를 추적하였다.

표정요소 없는 다중 UAV영상의 대응점 추출 후보군 구성방법 비교 (Comparison of Match Candidate Pair Constitution Methods for UAV Images Without Orientation Parameters)

  • 정종원;김태정;김재인;이수암
    • 대한원격탐사학회지
    • /
    • 제32권6호
    • /
    • pp.647-656
    • /
    • 2016
  • UAV의 발전에 따라 UAV영상의 활용도 늘어나고 있다. 다양한 UAV영상 기반의 어플리케이션에 점진적 번들 조정방법이 널리 사용된다. 그러나, 점진적 번들조정 방법은 중복이 없는 영상 쌍에서도 대응점을 추출해 긴 시간을 소요하게 된다. 이 과정을 효율적으로 처리하기 위해서는 중복지역에서만 대응점 추출연산을 진행해야한다. 만약 영상의 외부표정요소가 있을 경우 이를 기준으로 영상의 중복도를 계산하여 중복지역에서만 대응점 추출이 일어나도록 제한할 수 있다. 그러나 외부표정요소가 없는 영상을 활용하는 경우, 기하학적인 중복지역을 계산할 수 없으므로 다른 후보군 구성 방법의 적용이 필요하다. 본 논문에서는 외부표정 요소가 없는 경우의 대응점 추출 후보군 구성 방법들을 비교해 가장 효율적인 방법을 찾는다. 비교 방법은 일부 특징점, 특징점 군집화, 영상의 밝기를 활용한 후보군 구성방식이며 외부표정요소를 통해 구한 대응점 후보군 구성결과를 기준으로 각 방식을 비교한다. 비교 결과 일부 특징점을 활용하는 것이 가장 효율적으로 나타났다.