얼굴 인식은 얼굴의 특징적인 패턴을 이용하지만, 이러한 패턴은 표정, 포즈, 조명의 변화에 민감하여 인식에 어려움이 있다. 본 논문은 표정 변화에 강인한 인식 모델을 개발하기 위해 Cohn-Kanade 표정 데이터베이스와 AAM을 이용하여 다양한 데이터를 추출하였고, 추출된 데이터를 다선형 분석을 이용하여 분석하였다. 이를 적용한 인식 실험에서 PCA보다 표정에 좀 더 강인한 인식 성능을 나타내었다.
바이오메트릭스의 여러 가지 기술 중에서 얼굴인식은 지문인식, 손금인식, 홍채인식 등과는 달리 신체의 일부를 접촉시키지 않고도 원거리에 설치된 카메라를 통해 사람을 확인할 수 있는 장점을 가지고 있다. 그러나 얼굴인식은 조명변화, 표정변화 둥의 다양한 환경변화에 대단히 민감하게 반응하므로 얼굴의 특징 영역에 대한 정확한 추출이 반드시 선행되어야 한다. 얼굴의 주요 특징인 눈, 코, 입, 눈썹은 자세와 표정 그리고 생김새에 따라 다양한 위치, 크기, 형태를 가질 수 있다. 본 연구에서는 변화하는 특징 영역과 특징 점을 정확히 추출하기 위하여 얼굴을 9가지 방향으로 분류하고, 각 분류된 방향에서 특징 영역을 통계적인 형태에 따라 다시 2차로 분류하여, 각각의 형태에 대한 표준 템플릿을 생성하여 검출하는 방법을 제안한다.
본 논문에서는 사람의 표정이 아닌 애니메이션 캐릭터의 표정을 주색상과 특징점을 효과적으로 분석하여 인식하는 방법을 제안한다. 제안된 방법에서는 먼저 캐릭터의 특성에 맞게 간략화한 메쉬모델을 정의하고 캐릭터 얼굴과 얼굴의 구성요소를 주색상을 이용하여 검출한 후 각 구성요소의 에지를 활용하여 표정인식을 위한 특징점을 추출한다. 그런 다음, 각 특징점의 위치와 모양 정보를 신경망 학습을 통해 해당 AU로 분류하고, 제안된 표정 AU 명세서를 이용해 최종적으로 표정을 인식한다. 실험에서는 제안된 애니메이션 캐릭터의 표정인식 방법이 무표정을 포함하여 기쁨, 슬픔, 놀람, 화남, 공포의 6가지 표정을 비교적 신뢰성 있게 인식함을 애니메이션 영상을 이용한 실험을 통해 보여준다.
본 논문은 연속적으로 입력되는 2차원 얼굴 영상에서 얼굴의 특징 영역들을 추출하여 3차원 얼굴 모델의 표정을 실시간으로 제어하는 방법에 관한 연구이다. 2차원 얼굴 영상에서 얼굴을 추출하기 위해 Hue, Saturation 색상 값을 사용하며, 두 가지 색상 값을 이용하여 피부색과 배경색을 분리함으로써 얼굴 영역을 추출 할 수 있다. 추출 된 얼굴에서 특징 영역인 눈 코, 입술 영역 등의 일지를 각각의 영역에 적합한 추출 방법을 이용하여 추출한 뒤, 프레임 별로 영역들의 움직임을 비교함으로써 영역의 움직임 정보를 획득 할 수 있다. 이 정보를 3차원 얼굴 모델에 적용하여 2차원 동영상에서 획득된 대상의 얼굴의 표정을 3차원 얼굴 모델에 실시간으로 표현 할 수 있도록 한다.
본 논문은 중립 표정과 같은 표정 측정의 기준이 되는 단서 없이 다양한 내적상태 안에서 얼굴표정을 인식할 수 있는 개선된 시스템을 제안한다. 표정정보를 추출하기 위한 전처리작업으로, 백색화(whitening) 단계가 적용되었다. 백색화 단계는 영상데이터들의 평균값이 0이며, 단위분산값으로 균일한 분포를 갖도록 하여 조명 변화에 대한 민감도를 줄인다. 백색화 단계 수행 후 제 1 주성분이 제외된 나머지 주성분들로 이루어진 PCA표상을 표정정보로 사용함으로써 중립 표정에 대한 단서 없이 얼굴표정의 특징추출을 가능하게 하였다. 본 실험 결과는 83개의 내적상태와 일치되는 다양한 얼굴표정들에서 임의로 선택된 표정영상들의 얼굴표정 인식을 수행함으로써 다양하고 자연스런 얼굴 표정인식을 가능하게 하였다.
본 논문에서는 Active Shape Models(ASM)과 상태기반 모델을 사용하여 동영상으로부터 얼굴 표정을 인식하는 방법을 제시한다. ASM을 이용하여 하나의 입력 영상에 대한 얼굴요소특징점들을 정합하고, 그 과정에서 생성되는 모양변수벡터를 추출한다. 동영상에 대해 추출되는 모양변수벡터 집합을 세 가지 상태 중 한 가지를 가지는 상태벡터로 변환하고 분류기를 통해 얼굴의 표정을 인식한다. 분류단계에서는 표정별 표정변화에 따른 변화영역의 차이를 고려한 새로운 유사도 측정치를 제안한다. 공개데이터베이스 KCFD에 대한 실험에서는 제안한 측정치와 기존의 이친 측정치를 사용한 k-NN의 인식률이 k가 1일 때 각각 89.1% 및 86.2%을 보임으로써, 제안한 측정치가 기존의 이진 측정치보다 더 높은 인식률을 나타내는 것을 보인다.
본 연구는 PCA와 템플릿 정합을 사용한 얼굴 표정 인식 알고리즘을 제안한다. 먼저 얼굴 영상은 Haar-like feature의 특징 마스크를 사용하여 획득한다. 획득한 얼굴 영상은 눈과 눈썹을 포함하고 있는 얼굴 상위 부분과 입과 턱을 포함하고 있는 얼굴 하위 부분으로 분리하여 얼굴 요소 추출에 용이하게 나눈다. 얼굴 요소 추출은 눈 영상과 입 영상을 추출하는 과정으로 먼저 학습영상으로 PCA를 거쳐 생성된 고유얼굴을 구한다. 고유 얼굴에서 고유 입과 고유 눈을 획득하고, 이를 얼굴 분리 영상과 템플릿 매칭시켜 얼굴요소를 추출한다. 얼굴 요소는 눈과 입이 있으며 두 요소의 기하학적 특징으로 표정을 인식한다. 컴퓨터 모의실험 결과에 따르면 제안한 방법이 기존의 방법보다 추출률이 우수하게 나왔으며, 특히 입 요소의 추출률은 99%에 달하였다. 또 이 얼굴 요소 추출 방법을 표정인식에 적용하였을 때 놀람, 화남, 행복의 3가지 표정의 인식률이 80%를 상회하였다.
본 논문에서는 사람의 정면 얼굴을 찍은 컬러 동영상에서 얼굴의 각 구성 요소에 대한 특징점들을 추출하여 3차원 개인 얼굴 모델을 생성하고 이를 얼굴의 표정 움직임에 따라 애니메이션 하는 방법을 제시한다. 제안된 방법은 얼굴의 정면만을 촬영하도록 고안된 헬멧형 카메라( Head-mounted camera)를 사용하여 얻은 2차원 동영상의 첫 프레임(frame)으로부터 얼굴의 특징점들을 추출하고 이들과 3차원 일반 얼굴 모델을 바탕으로 3차원 얼굴 특징점들의 좌표를 산출한다. 표정의 변화는 초기 영상의 특징점 위치와 이 후 영상들에서의 특징점 위치의 차이를 기반으로 알아낼 수 있다. 추출된 특징점 및 얼굴 움직임은 보다 다양한 응용 이 가능하도록 최근 1단계 표준이 마무리된 MPEG-4 SNHC의 FDP(Facial Definition Parameters)와FAP(Facial Animation Parameters)의 형식으로 표현되며 이를 이용하여 개인 얼굴 모델 및 애니메이션을 수행하였다. 제안된 방법은 단일 카메라로부터 촬영되는 영상을 기반으로 이루어지는 MPEG-4 기반 화상 통신이나 화상 회의 시스템 등에 유용하게 사용될 수 있다.
온라인 기반의 3차원 얼굴 애니메이션을 위해서 실시간으로 얼굴을 캡처하고 표정 데이터를 추출하는 것은 매우 중요한 작업이다. 최근 동영상 입력을 통해 연기자의 표정을 캡처하고 그것을 그대로 3차원 얼굴 모델에 표현하는 비전 기반(vision-based) 방법들에 대한 연구가 활발히 이루어지고 있다. 본 논문 에서는 실시간으로 입력되는 동영상으로부터 얼굴과 얼굴 특징점들을 자동으로 검출하고 이를 추적하는 시스템을 제안한다. 제안 시스템은 얼굴 검출과 얼굴 특징점 추출 및 추적과정으로 구성된다. 얼굴 검출은 3차원 YCbCr 피부 색상 모델을 이용하여 피부 영역을 분리하고 Harr 기반 검출기를 이용해 얼굴 여부를 판단한다. 얼굴 표정에 영향을 주는 눈과 입 영역의 검출은 밝기 정보와 특정 영역의 고유한 색상 정보를 이용한다. 검출된 눈과 입 영역에서 MPEG-4에서 정의한 FAP를 기준으로 10개의 특징점을 추출하고, 컬러 확률 분포의 추적을 통해 연속 프레임에서 특징점들의 변위를 구한다 실험 결과 제안 시스템 은 약 초당 8 프레임으로 표정 데이터를 추적하였다.
UAV의 발전에 따라 UAV영상의 활용도 늘어나고 있다. 다양한 UAV영상 기반의 어플리케이션에 점진적 번들 조정방법이 널리 사용된다. 그러나, 점진적 번들조정 방법은 중복이 없는 영상 쌍에서도 대응점을 추출해 긴 시간을 소요하게 된다. 이 과정을 효율적으로 처리하기 위해서는 중복지역에서만 대응점 추출연산을 진행해야한다. 만약 영상의 외부표정요소가 있을 경우 이를 기준으로 영상의 중복도를 계산하여 중복지역에서만 대응점 추출이 일어나도록 제한할 수 있다. 그러나 외부표정요소가 없는 영상을 활용하는 경우, 기하학적인 중복지역을 계산할 수 없으므로 다른 후보군 구성 방법의 적용이 필요하다. 본 논문에서는 외부표정 요소가 없는 경우의 대응점 추출 후보군 구성 방법들을 비교해 가장 효율적인 방법을 찾는다. 비교 방법은 일부 특징점, 특징점 군집화, 영상의 밝기를 활용한 후보군 구성방식이며 외부표정요소를 통해 구한 대응점 후보군 구성결과를 기준으로 각 방식을 비교한다. 비교 결과 일부 특징점을 활용하는 것이 가장 효율적으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.