• Title/Summary/Keyword: 표면 파손

Search Result 189, Processing Time 0.023 seconds

Investigation of Fatigue Strength and Prediction of Remaining Life in the Butt Welds Containing Penetration Defects (블완전용입 맞대기 용접재의 용입깊이에 따른 피로강도특성 및 잔류수명의 산출)

  • Han, Seung Ho;Han, Jeong Woo;Shin, Byung Chun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.423-435
    • /
    • 1998
  • In this paper fatigue strength reduction of butt weld with penetration defect, which can be seen frequently in the steel bridge, was assessed quantitatively. S-N curves were derived and investigated through the constant amplitude fatigue test of fully or partially penetrated welded specimen made of SWS490 steel. The fracture mechanical method was applied in order to calculate the remaining fatigue life of the partially penetrated butt welds. The fatigue limit of the fully penetrated butt welds was higher than that of category A in AASHTO's fatigue design curves, and the slope of S-N curves with 5.57 was stiffer than that of other result for welded part generally accepted as 3. The fatigue strength of the partially Penetrated butt weld was strongly influenced by the size of lack of penetration, D. It decreased drastically with increasing D from 3.9 to 14.7mm. Fracture behaviour of the partially penetrated butt weld is able to be explained obviously from the beach mark test that a semi-elliptical surface crack with small a/c ratio initiates at a internal weld root and propagates through the weld metal. To estimate the fatigue life of the partially penetrated butt weld with fracture mechanics, stress intensity factors K of 3-dimensional semi-elliptical crack were calculated by appling finite elements method and fracture mechanics parameters such as C and m were derived through the fatigue test of CT-specimen. As a result, the fatigue lives obtained by using the fracture mechanical method agreed well with the experimental results. The results were applied to Sung-Su bridge collapsed due to penetration defects in butt weld of vertical member.

  • PDF

A Study on Non-Destructive Safety Evaluation Platform of Internal Defects of the Composite Hydrogen Tank using Finite Element Analysis (유한요소해석을 이용한 수소압력용기 비파괴 시험 평가 플랫폼의 안전성 기준 개발 연구)

  • Yongwoo Lee
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.3-10
    • /
    • 2022
  • In this study, damage resulting from internal flaws was investigated by finite element analysis for the safety evaluation of a non-destructive testing platform for hydrogen pressure vessels. A specimen was modeled and calculated using finite element analysis to determine material properties in accordance with the parameters of the composite material in order to assess the safety of the Type 4 hydrogen pressure vessel. Through this, flaws in the hydrogen pressure vessel were modeled, and test conditions were provided in accordance with rules to look into whether there was safety. Delamination, foreign object, and vertical cracks were modeled for internal flaws, and damage was examined in accordance with failure criteria. As the delamination defect approached the interior of the hydrogen pressure tank, it became more likely to cause damage. Additionally, as the crack depth grew in the case of vertical cracks, the likelihood of crack propagation rose. On the other hand, it was anticipated that the foreign item defect would suffer more damage from the outside in. A non-destructive testing platform will be used to assess the safety of fuel cell vehicles that are already in operation in future research.

Analysis of the petrological characteristics and deterioration phenomena of the rocks consisting the Gwangtonggyo(bridge) on the Cheonggyecheon(river) (광통교 구성암석의 석질 및 훼손양상 분석 연구)

  • Lee, Sang Hun
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.39-56
    • /
    • 2005
  • The Gwangtonggyo(bridge) on the Cheonggyecheon(river) is mainly composed of biotite granite with coarse grain. The rock consists mainly of quartz, plagioclase, microcline, orthoclase and biotite with lesser amount of muscovite, sericite and chlorite. Muscovite and sericite may be formed from feldspars and chlorite from biotite by alteration(including weathering). These rocks are relatively deteriorated by weathering, polluted water running the river and heavy traffic. The main phenomena of damages are surface exfoliation, grain separation, deceleration, pollution of organic and heavy chemical elements, cracks and breakage. These phenomena have been analyzed by polarized microscope, XRD and SEM/EDX. The analyzed results show organic pollution and secondarily formed gypsum and apatite on the rock surface and micro-pores. NaCl and $CaCO_3$ as rock salt and calcite probably may be formed secondarily in some points. Also heavy chemical elements such as Cr, Pb, Pd, W, La, Zn and Nd are polluted in some samples. The contacts between rocks are generally breakdown in small scale or cracks are developed due to mainly load and vibration shock of heavy traffic.

  • PDF

Conservation Treatment of the Seated Stone Bodhisattva Discovered in Pyeongchang and Restoration of the Statue Using 3D Digital Technologies (평창 발견 석조보살좌상의 보존처리와 3차원 디지털기술을 활용한 복원)

  • Jo, Seongyeon;Kwon, Yoonmi;Choi, Bobae
    • Conservation Science in Museum
    • /
    • v.20
    • /
    • pp.77-92
    • /
    • 2018
  • A stone seated bodhisattva (Sinsu5971) was discovered in Pyeongchang-gun, Gangwon-do in 1974 and was transferred to the Chuncheon National Museum upon its opening in 2002. The statue had damage to wide areas and was thus difficult to restore. This study utilized 3D scanning and 3D printing technologies to identify the overall form of the statue and the degree of damage, which allowed the restoration of lost portions that otherwise could not have been accurately restored to their original shape. Prior to the conservation treatment, the pigments used to decorate the surface were investigated using an optical microscope, and their main components were analyzed with a p-XRF (Potable X-ray Fluorescence Analyzer). The deteriorated lacquered surface was stabilized using animal glue and consolidated with stone strengthener (OH-100). The investigation found that the surface of the statue was made of zeolite that was lacquered and then gilded. As for pigments, white lead was used for the white color and red lead and cinnabar were used for red. The lost portions were redesigned by mirroring the remaining parts with 3D technologies. However, it was difficult to affix the 3D printing outputs to the statue without visible gaps since the damaged parts suffered flection. The portions of the outputs to be connected to the statue were thus modified and supplemented. It was also difficult to collect data on the properties of 3D printing materials due to the lack of previous in-depth study. These obstacles are subjects for further study.

Heat Transfer Characteristics of the Asphalt pavement by Solar Energy accumulation (열에너지 누적에 따른 아스팔트 포장의 열전달 특성 변화)

  • Lee, Kwan-Ho;Kim, Seong-Kyum;Oh, Seung-Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.490-497
    • /
    • 2020
  • Asphalt pavement accounts for more than 90% of the total pavement in Korea. Pavement is most widely constructed among construction structures. The heat transfer characteristics (Thermophysical Properties) of the asphalt pavement cause the heat island effect in downtown areas. An increasing asphalt surface temperature is one of the major causes of damage to asphalt pavement. This study examined the heat transfer characteristic factors according to solar energy accumulation in an asphalt mixture. The specimens (WC-2 & PA-13, Recycled aggregate used WC-2) used in the experiment were compacted with a Gyratory Compactor. The thermo-physical properties (thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity) and solar energy accumulation were evaluated. The thermal accumulation and HFM tests revealed a 1.2- to 2.0-fold difference. This indicates that the thermal conductivity of the asphalt mixture pavement changes with the accumulation of solar energy. An analysis of the correlation of thermal conductivity according to the surface temperature of the asphalt mixture showed that WC-2 was logarithmic, and PA-13 was linear. Experiments on the heat transfer characteristics of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

Scientific Investigation for Conservation Methodology of Bracket Mural Paintings of Daeungjeon Hall in Jikjisa Temple (직지사 대웅전 포벽화 보존방안을 위한 과학적 조사)

  • Lee, Hwa Soo;Kim, Seol Hui;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.107-118
    • /
    • 2018
  • This report does studied for making the method of conserving bracket murals in Daeungjeon of Jikjisa Temple, through the scientific way. Results of evaluated the conservation status at the braket mural paintings, most serious damage is structural damage like cracks, breakage, and delamination. After optical investigation, a characteristic point wasn't found such as underdrawing or traces of a coat of paint. The ultrasonic examination speed by each wall painting was measured from about 195.8 m/s to 392.7 m/s, according to the location of the surface, and it was able to compare the surface properties according to the location. In Infrared-thermal image measurement shows that wall layer separation and paint layer delamination are closely detected, therefore it was able to judge of damage on the objective way. Material analysis revealed that the walls were made by sand and weathering soil. The wall layer combined sand with less than fine sand size by nearly 5:5, and the finishing layer was found to have mixed medium sand and fine sand at approximately 6:4 rates. However, In case of finishing layer, mixing ratios of sizes less than very fine sand were found to be significantly lower than wall. Therefore, it is estimated that the plysical damage such as the separation between the layers of the walls created in the braket mural paintings, is continuously caused by changes in the internal stresses and volume ratio caused by the density differences between the wall and the finishing layers.

The Effect of Stress on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박용 열교환기 세관의 SCC에 미치는 응력의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.22-32
    • /
    • 2003
  • Al-brass material is generally used at the state of plastic deformation, for example; bending, extension of bell mouth at shell and tube type heat exchanger. And SCC(stress corrosion cracking) of Al-brass material will be affected by residual stress as plastic deformation. SCC results from synergism between mechanical factor and corrosion environment. Mechanical factor is stress that directly relates with stress intensity factor at the crack tip. This paper was studied on the effect of stress on SCC of Al-brass tube under in $3.5\%$ NaCl. + $0.1\%\;NH_4OH$ solution by constant displacement tester. Increasing of acidified water flow into sea and speeds up corrosion rate of Al-brass which is used as a tube material of vessel heat exchanger by polluted coast seawater. The experimental results are as follow The latent time of SCC occurrence gets longer as the initial stress intensity factor($K_{Ii}$) gets lower The main crack was propagated as the initial stress intensity factor($K_{Ii}$) gets higher, and secondary cracks occurred by electro-chemical factor a(ter stage of released stress. Dezincification phase showed around the crack, and the range of dezincification gets wider as the initial stress intensity factor($K_{Ii}$) gets higher.

  • PDF

Effects of sonication on physicochemical properties and pore formation of maize starch (초음파처리가 옥수수전분의 이화학특성과 기공 형성에 미치는 영향)

  • Choi, Eun-Hee;Lee, Jae-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.507-512
    • /
    • 2017
  • The physicochemical properties of maize starch sonicated at various amplitudes (100, 200, and 300 W) and times (10, 30, and 50 min) were examined. The amount of enzyme-susceptible starch increased marginally after sonication. Sonication increased the amount of oil absorbed in the starch although the degree of oil absorption decreased with an extension of the sonication time, implied that different types and extent of damages occurred. Scanning electron microscopy revealed that ultrasound sonication did not form pores on the surfaces, but caused damages such as depression and erosion. Pasting viscosity of starch decreased with an increase in the severity of sonication conditions because of the weakened polymer network. X-ray diffraction suggested that the crystalline domains in starch were not susceptible to sonication and were more resistance to degradation. Sonicated starch formed more pin-holes on the surfaces in the initial glucoamylase reaction; subsequently, as the reaction proceeded, porous starch with enlarged pores was formed and finally, disrupted granular fragments were observed.

Effect of Clamping Pressure on Surface Properties of Gas Diffusion Layer in PEFCs (체결압이 고분자연료전지 기체확산층의 표면성질에 미치는 영향)

  • Ahn, Eun-Jin;Park, Gu-Gon;Yoon, Young-Gi;Park, Jin-Soo;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.306-310
    • /
    • 2007
  • Characteristics of GDL (Gas Diffusion Layer) mainly determine the gas diffusion and water removal in a cell, thereby changing the performance and affecting durability of PEFC. To optimize the water management and understand the two phase flow in a GDL, it is important to study the behaviors of GDL micro structure under the real operating condition. In the clamped condition of cell, the GDL beneath the rib is more compressed than beneath the channel. Many researches on physical, electrochemical, mechanical behaviors of gas diffusion layer has been conducted. However, changes in surface properties under clamped condition have rarely studied. In present study, the morphology of broken connections of carbon fibers and detachment of PTFE coatings on the fibers were shown from the microscopic observations. In addition, changes in wetting properties of GDL by compression were investigated by using XPS and liquid uptake methods. The hydrophobic characteristics of GDL surface beneath the rib of the flow field plate are changed due to the deformation of micro structure.

Regeneration of a defective Railroad Surface for defect detection with Deep Convolution Neural Networks (Deep Convolution Neural Networks 이용하여 결함 검출을 위한 결함이 있는 철도선로표면 디지털영상 재 생성)

  • Kim, Hyeonho;Han, Seokmin
    • Journal of Internet Computing and Services
    • /
    • v.21 no.6
    • /
    • pp.23-31
    • /
    • 2020
  • This study was carried out to generate various images of railroad surfaces with random defects as training data to be better at the detection of defects. Defects on the surface of railroads are caused by various factors such as friction between track binding devices and adjacent tracks and can cause accidents such as broken rails, so railroad maintenance for defects is necessary. Therefore, various researches on defect detection and inspection using image processing or machine learning on railway surface images have been conducted to automate railroad inspection and to reduce railroad maintenance costs. In general, the performance of the image processing analysis method and machine learning technology is affected by the quantity and quality of data. For this reason, some researches require specific devices or vehicles to acquire images of the track surface at regular intervals to obtain a database of various railway surface images. On the contrary, in this study, in order to reduce and improve the operating cost of image acquisition, we constructed the 'Defective Railroad Surface Regeneration Model' by applying the methods presented in the related studies of the Generative Adversarial Network (GAN). Thus, we aimed to detect defects on railroad surface even without a dedicated database. This constructed model is designed to learn to generate the railroad surface combining the different railroad surface textures and the original surface, considering the ground truth of the railroad defects. The generated images of the railroad surface were used as training data in defect detection network, which is based on Fully Convolutional Network (FCN). To validate its performance, we clustered and divided the railroad data into three subsets, one subset as original railroad texture images and the remaining two subsets as another railroad surface texture images. In the first experiment, we used only original texture images for training sets in the defect detection model. And in the second experiment, we trained the generated images that were generated by combining the original images with a few railroad textures of the other images. Each defect detection model was evaluated in terms of 'intersection of union(IoU)' and F1-score measures with ground truths. As a result, the scores increased by about 10~15% when the generated images were used, compared to the case that only the original images were used. This proves that it is possible to detect defects by using the existing data and a few different texture images, even for the railroad surface images in which dedicated training database is not constructed.