• 제목/요약/키워드: 표면응력

Search Result 1,010, Processing Time 0.028 seconds

Study of Residual Stress Control for Thickening to Hydrogen Free-DLC Films (무수소 DLC막의 후막화를 위한 잔류응력 제어 연구)

  • Kim, Jong-Guk;Gang, Yong-Jin;Kim, Gi-Taek;Kim, Dong-Sik;Ryu, Ho-Jun;Jang, Yeong-Jun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.101-101
    • /
    • 2016
  • DLC(Diamond Like Carbon)막은 그 물성의 다양함으로 인하여 산업기계, 금형, 공구, 광학 및 수송기기의 파워셀 부품등 많은 산업분야에 활용되고 있다. 일반적으로 DLC막은 증착에 사용되는 카본의 원료에 따라 크게 두 가지로 나눌 수 있는데, 이는 탄화 수소계 가스(CxHy)를 사용하여 증착된 a-C:H(amorphous Hydro-Carbon)과 고체 카본을 사용하는 a-C(amorphous Carbon)이다. 또한 a-C 중 진공 아크 공법으로 제작된 막(ta-C : tetrahedral amorphous-Carbon)은 다이아몬드 성분인 sp3의 분률이 높아, 그 경도는 40 - 85 GPa 이상이며, 무수소화로 500도 이상의 고온에서도 그 물성의 변화가 적어 그 활용도가 높아지고 있다. 하지만 높은 경도와 더불어 막의 잔류응력이 높아 3 um 이상 후막화하는 것은 어렵다. 이는 높은 잔류응력으로 인한 막의 증착시, 막 자체가 파손되거나, 기판과 막사이의 계면 밀착력이 약하여 박리되거나, 또는 높은 밀착력으로 인하여 모재가 파손되는 등 다양한 문제를 발생한다. 본 연구에서는 이 고경도 무수소 DLC막(ta-C)의 후막화하는 방안으로 주요 코팅 변수와 잔류응력과의 관계를 에너지 관점에서 파악하고 이를 활용 잔류응력을 제어하여 할 수 있는 방법을 제시하고자 한다.

  • PDF

알기쉬운電氣鍍金 理論 (III)

  • 표면공학회편집부
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.2
    • /
    • pp.134-144
    • /
    • 1979
  • 금회에는 평활한 도금을 하기위한 요인과 평활제와 광태제의 작용기구, 그리고 전류분포 흡장수소, 내부응력, 밀착성, 경도, 도금욕 관리를 위한 관점에서의 양극의거동 및 배수처리에 관한 기초문제에 관해 알아보고 끝을 맺겠다. 본 강좌는 현장 실무자를 위해 日本실務表面技術誌 1974년 9~12월호 75년 1~3월호에 연재되었던 것을 계제할것임을 밝힙니다.

  • PDF

Structural Optimization for Hybrid Vertical-Axis Wind Turbine Blade using Response Surface Method (반응표면법을 이용한 양항력형 수직축 풍력발전기 블레이드의 구조 최적 설계)

  • So, Ki-Sung;Choi, Chan-Woong;Lee, Dong-Chul;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1331-1337
    • /
    • 2013
  • This study deals with the structural optimization of hybrid vertical-axis wind turbine blades using a response surface method (RSM). The structural analysis results suggest that the stress of hybrid vertical-axis wind turbine blades exceeds the yield strength. Optimization techniques are then applied to structural design to ensure a safe structure. First, the design factors that strongly influence the structural response are identified. The RSM was applied based on the design of experiments. The objective function and constraint terms set the weight and allowable stress, respectively. Furthermore, sensitivity analysis was conducted to indicate the effects of the design factors on the stress and weight. Finally, structural design was performed for the hybrid vertical-axis wind turbine blade.

Crack growth behavior of fatigue surface crack initiated from a small surface defect (작은 表面缺陷에서 發생.成長하는 表面疲勞균열의 成長特性에 관한 硏究)

  • 서창민;권오헌;이정주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.191-197
    • /
    • 1987
  • It has been well known that the fracture mechanics can be applied to large through crack growth. But the growth rate of small surface cracks initiated from a small defect under rotary bending fatigue tests can not be treated as a function of stress intensity factor range. In this paper, to investigate the growth behavior of surface small fatigue cracks in the view-point of both fracture mechanics and strength of materials, the fatigue test has been carried out on two kinds of plain carbon steels with a small surface defect. Applying the concept of the cyclic strain intensity factor range .DELTA. $K_{\epsilon}$/$_{t}$ to the analysis of small surface fatigue crack growth, it is found that the relationship between cyclic strain intensity factor range and crack growth rate shows linear relation on logarithmic coordinates regardless of defect sizes and two kinds of carbon steels.s.s.

Analysis of mixed mode surface crack in finite-width plate subjected to uniform tension and bending by boundary element method (경계요소법에 의한 등분포인장과 굽힘을 받는 유한폭 판재의 혼합 모드 표면균열에 대한 해석)

  • 박성완;홍재학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1592-1602
    • /
    • 1990
  • Mixed mode surface crack in finite-width plate subjected to uniform tension and bending has been analyzed in 3-D problem by using boundary element method. The calculations were carried out for the surface crack angles(.a/pha.) of 0.deg., 15.deg., 30.deg., 45.deg., 60.deg., and 75.deg., and for the aspect ratio(a/c) of 0.2, 0.4, 0.6 and 1.0 to get stress intensity factors at the boundary points of the surface crack. For the aspect ratio of 1.0 and the surface crack angles, finite element method was used to check the results in this study. Comparison of the results from both methods showed good agreement.

Settlement Behavior Prediction of CFRD After Impounding (CFRD의 담수 후 침하 거동 예측)

  • Kim, Yong Seong;Kim, Bum Joo;Shin, Dong Hoon;Park, Han Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.209-218
    • /
    • 2006
  • In this study, stress and deformation of CFRD during its construction and impounding were analyzed and compared with its monitoring results. Moreover, deformation characteristics of CFRD after impounding were evaluated based on the settlement monitoring records of total 23 domestic and foreign CFRDs during construction and impounding. The investigation on the behavior of CFRD indicated that the influence of impounding on its stability was minimal although slight increases in vertical and horizontal stresses and strains were observed. Also, one method was proposed to predict a crest settlement from multi-layer settlements by applying the best fit method. It is expected that the results of this study would provide practical information for the design, construction, and management of CFRD.

FE Analysis on Stress and Deformation Behaviors of Elastomeric Contact Seals for a Pipe (배관용 탄성접촉시일의 응력 및 변형거동에 관한 유한요소해석)

  • Kim, Chung-Kyun;Kim, Tae-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.34-37
    • /
    • 2011
  • This paper presents sealing contact stress and deformation behaviors of an elastomeric contact seal for a pipe connection. In this study, a pipe connection is used by a joint nut and an elastomeric contact seal with a sealing interference of 0.2~0.5mm. A sealing interference in which compresses an elastomeric contact seal is generated by fastening a joint nut between two pipes. The FEM computed results show that the contact normal stress of contact model 1 with an inclined sealing surface is 1.5~1.75 times high in compared with that of contact model 2 with a parallel sealing surface. This indicates that the sealing contact surface recommends a wedge contact mode between two pipe connections for a high sealing compression stress.

Annealing Effect and Stress for Ultra-Thin 3%Si-Fe Strip Wound Cores (극박방향성 규소강판 권자심 제작에 따른 응력과 열처리효과)

  • 김영학
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.185-191
    • /
    • 1998
  • Magnetic domain structure and static magnetic properties were investigated in the ultra thin 3%Si-Fe strip wound cores when the strips were wound and annealed to relief the stress. The elastic and plastic deformation due to the radius of curvature was also investigated for the cores. At the as-wound state, the maze pattern domain structure was generated on the concave surface of the core and 180$^{\circ}$ domain wall was recovered by annealing 600 $^{\circ}C$$\times$30 min. After annealed by 900 $^{\circ}C$$\times$30 min, Hc of strip-wound cores was not reached to the $H_c$ of the strip even at the cores of elastic deformation region. It is necessary to relief the local stress remained in the core when the cores were manufactured for the application of ultra-thin 3%Si-Fe strip.

  • PDF

A Study on the Safety of Lifting Cable for Construction of Coastal Structures (항만건설을 위한 케이슨 들고리의 안전성에 관한 연구)

  • Kwak, Kae Hwan;Jang, Ki Woong;Kim, Jong Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.85-99
    • /
    • 1998
  • This paper describes an experimental study to examine collapse causes of the lifting cable due to brittle failure of an fitting anchor under the lifting works. Also, in this study an collapse mechanism that was obtained from stress analysis was compared with an actual collapse procedure. Fractographical analysis as well as chemical component test, tension test and Charpy V-Notch impact test for the fractured steel members were carried out. And then, its results were compared with that of normal steel members. Circumferential surface flaws were developed at internal facets of the fitting anchor before tensile stress occurred. Hence, a higher stress than nominal stress was occurred at flaws by stress concentration at the crack tip. Also, stress intensity factor of members increased by crack size of the potential flaws. Because the stress intensity factor at the crack tip was greater than critical values(fracture toughness), brittle fracture occurred under the lifting works. It is judged that the main collapse of the lifting cable is due to brittle fracture of the fitting anchor.

  • PDF