• Title/Summary/Keyword: 표면구속응력

Search Result 30, Processing Time 0.021 seconds

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect (구속상태를 고려한 반타원 표면균열의 파손평가선도)

  • Seo, Heon;Han, Tae-Su;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

Consideration of Constraint Effect of Surface Cracks Under PTS Conditions Using J-Q Approach (PTS 사고하에서 J-Q해석법을 이용한 표면균열의 구속효과 고찰)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yun-Jae;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.105-112
    • /
    • 2002
  • In recent years, the integrity of reactor Pressure Vessel(RPV) under pressurized thermal shock (PTS) accident has been treated as one of the most critical issues. Under PTS condition, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. As a result, cracks on inner surface of RPV may experience elastic-plastic behavior which can be characterized by J-integral. In such a case, however, J-integral may possibly lose its vapidity due to the constraint effect. The degree of constraint effect is influenced by the loading mode, crack geometry and material properties. In this paper, in order to investigate the effect of clad thickness and crack geometry on constraint effect, three dimensional finite element analyses were performed for various surface cracks. Total of 27 crack geometries were analyzed and results were presented by a two-parameter characterization based on the J-integral and the f-stress.

Dynamic Behavior of Unsaturated Decomposed Granite Soils under Low Shear Strain Amplitude (저전단변형율에서의 불포화화강풍화토의 동적 거동)

  • Huh, Kyung-Han;Baek, Joong-Yuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.57-63
    • /
    • 2005
  • In case of general structures, it has been known that the strain amplitude band experienced by the base in a state of service load is less than 1% and most of the base show low, strain amplitude behavior less than 0.01%. In this study examining the influence affected to dynamic behavior in a condition of the low strain amplitude of unsaturated decomposed granite soils, the resonant column test, using some samples in Su-won area, has been performed for each degree of saturation resulted from different void ratios and confined stress. It is found out that the minimum value of the damping ratio occurred in roughly $17{\sim}18%$ according to void ratios regardless of confined pressure in the same manner with the case of the maximum shear elastic modulus; and it is estimated that for the influence of surface tension in the optimum degree of saturation, the damping ratio appears to be least.

Buckling과 Freehang을 이용한 DLC 필름의 접착에너지 평가

  • 정진원;문명운;이광렬;고대홍
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.127-127
    • /
    • 2000
  • 다이아몬드상 카본(Diamond-like Carbon, DLC) 필름은 비정질 재료로서 다이아몬드와 유사한 높은 경도, 내마모성, 화학적 안정성, 그리고 광학적 특성을 가지고 있으며, 낮은 마찰계수와 높은 탄성률 등으로 인해 많은 분야에서 응용이 연구되고 있는 재료이다. 그러나 DLC 필름이 이러한 우수한 특성이 가지고 있음에도 불구하고 수 GPa에 이르는 높은 압축 잔류 응력으로 인해 응용에 제약을 받고 있다. 이러한 압축 잔류 응력이 상당한 값에 이르게 되면 기판의 구속에서 벗어나게 되어, 기판으로부터 떨어지게 되고 굽힘을 받게 되는 delamination buckling 현상이 일어나기도 한다. 본 연구에서는 높은 잔류 응력으로 인해 자연적으로 발생하는 buckling 현상과 식각 과정을 통해 인위적으로 기판의 제한으로부터 필름을 완화시키는 freehang 방법을 이용하여 필름이 기판에 접착되는데 필요한 에너지를 평가하려고 한다. 본 실험에서는 rf-PACVD 장비를 이용하여 필름을 증착하였다. 이때 전극과 플라즈마 사이의 바이어스 음전압은 -100~700 Vb로 변화를 주었으며, 합성압력은 9mTorr로 고정하였다. 사용한 반응 가스는 메탄(CH4)이고, 아르곤(Ar)을 이용하여 모든 실험에서 동일하게 기판을 전처리 하였다. buckling 현상을 관찰하기 위해 사용된 기판은 slide glass이고, freehang을 제작하기 위해 사용된 기판은 (100) p-type Si wafer 이다. freehang 제작시 사용한 식각 용액은 KOH(5.6mol)이며 외부 요인을 제거하기 위해 7$0^{\circ}C$ 항온조를 사용하였다. Buckling 된 필름과 freehang은 광학 현미경과 전자 주사 현미경에 의해 관찰되었으며, 사인 함수 형태의 곡면을 가지고 있었다. 또한 freehang 제작시 각각의 주기와 진폭을 통해, 필름과 기판사이의 계면에너지와 buckling 되면서 새로 생성된 두 표면에너지 차이를 구할 수 있게 되고, 이를 통해 접착에너지를 평가할 수 있었다.

  • PDF

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Preliminary Study (GREAT 셀을 이용한 삼축압축시험의 수치모사: 예비연구)

  • Park, Dohyun;Park, Chan-Hee
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.219-230
    • /
    • 2022
  • The Geo-Reservoir Experimental Analogue Technology (GREAT) cell was designed to recreate the thermal-hydro-mechanical conditions of deep subsurface in the laboratory. This apparatus can generate a polyaxial stress field using lateral loading elements, which rotate around the longitudinal axis of a sample and is capable of performing a fluid flow test for samples containing fractures. In the present study, numerical simulations were carried out for triaxial compression tests using the GREAT cell and the mechanical behavior of samples under different conditions of lateral loading was investigated. We simulated an actual case, in which triaxial compression tests were conducted for a polymer sample without fractures, and compared the results between the numerical analysis and experiment. The surface strain (circumferential strain) of the sample was analyzed for equal and non-equal horizontal confining pressures. The results of the comparison showed a good consistency. Additionally, for synthetic cases with a fracture, we investigated the effect of the friction and type of fracture surface on the deformation behavior.

A Study on the Effect of Pile Surface Roughness on Adfreeze Bond Strength (말뚝표면 거칠기에 따른 동착강도 변화에 관한 연구)

  • Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.79-88
    • /
    • 2011
  • Adfreeze bond strength develops upon freezing of pore water within soil and at foundation surface. It has been reported that various factors like temperature, soil type, and pile surface roughness affect adfreeze bond strength. Especially, pile surface roughness has been considered as a primary factor to design pile foundation in frozen ground. It has usually been estimated with fixed correction factors for pile materials. However, even if the pile foundation material is the same, the surface roughness could vary depending on the production circumstances. In this study, laboratory test was carried out to quantitatively analyze the effects of surface roughness on the adfreeze bond strength, and fractal dimension was used as a measure for surface roughness. Test results showed that adfreeze bond strength increased with decreasing temperature, increasing vertical stress and surface roughness. The adfreeze bond strength varies sensitively with surface roughness in the early freezing section of $-2^{\circ}C$, but its sensitivity decreased in the temperature ranging between $-2^{\circ}C$ to $-5^{\circ}C$. The results conclude that the roughness highly affects the frictional resistance of pile surface in frozen ground; however, the roughness does not affect considerably when the temperature drops below about $-2^{\circ}C$.

Settlement Behavior of Foundation Rubble-mound by Vibro-Compaction (진동다짐에 의한 기초사석의 침하거동)

  • Yoo, Kun-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.127-136
    • /
    • 2011
  • The settlement of a compaction plate resting on the surface of rubble-mound and subjected to a vibrating vertical load can be characterized by a transient amplitude and a plastic settlement. As long as the maximum imposed load does not exceed the bearing capacity of the rubble-mound, plastic settlement will approach an ultimate value and essentially steady-state vibration will ensue. For the settlement behavior by vibro-compaction, most laboratory experiments were conducted on laterally confined samples with loads over the full surface area or on samples placed on a vibrating table. In the field, the loads cover only a small fraction of the surface area. In this study, crushed stones are loaded with the same as field condition. According to the vibro-compaction experiments on crushed stone, it was found that approximately 90% of total settlement occur within 2 minutes and plastic settlement increases with increasing cyclic stress levels including static and dynamic stress. A compaction equation on which the number of load cycles, amplitude of plate, settlement, width of plate, and cyclic stress are related each other is proposed.

A Study on Fatigue Behavior according to Effective Case Depth in Induction Case Hardened SM45C Steel (고주파표면경화한 SM45C 강에서 유교경화층깊이가 피로거동에 미치는 영향)

  • 오세욱;호정원;박원조
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.71-80
    • /
    • 1991
  • This paper reveals the effect of the effective case depth(ECD) on the fatigue behavior of a high-frequency induction hardened SM45C in rotated bending fatigue test. In addition, the effects of fracture modes(surface origin type, inner origin type) on it are discussed. The fatigue limit of the induction hardened steel is remarkably increased compared with that of base metal. In addition, the fatigue limit is linearly increased as the effective casedepth grows deep in the region of this experiment (ECD/R;0.23-0.49). The S-N curve and fracture mode in the induction case hardened steel are classified into two kinds, as a result : N$_{f}$<10$^{5}$ ;surface origin type fracture(at high stress), N$_{f}$>10$^{5}$ ; in ner origin type fracture(at low stress). In case of inner origin type fracture; as the effective case depth(ECD) gets deep, the fatigue limit is increased by the reason that the fracture origin moves toward center; in reverse, is decreased by reason that the compressive residual stress gets low. As a result, the increasing effect of the former is much bigger than the decreasing effect of the latter, and the fatigue limit is increased as the ECD gets deep.eep.

  • PDF

Constraint of Semi-elliptical Surface Cracks in T and L-joints (T-형 및 L-형 배관내 반타원 표면균열에서의 구속상태)

  • Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1325-1333
    • /
    • 2001
  • Critical defects in pressure vessels and pipes are generally found in the form of a semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. Furthermore, in addition to the traditional single parameter K or J-integral, the second parameter like T-stress should be measured to quantify the constraint effect. In this work, the validity of the line-spring finite element is investigated by comparing line-spring J-T solutions to the reference 3D finite element J-T solutions. A full 3D-mesh generating program for semi-elliptical surface cracks is employed to provide such reference 3D solutions. Then some structural characteristics of the surface-cracked T and L-joints are studied by mixed mode line-spring finite element. Negative T-stresses observed in T and L-joints indicate the necessity of J-T two parameter approach for analyses of surface-cracked T and L-joints.