• Title/Summary/Keyword: 표면개질 분리막

Search Result 48, Processing Time 0.018 seconds

세라믹막의 $CO_2$ 분리계수

  • 현상훈;강범석;조상연
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.04a
    • /
    • pp.57-57
    • /
    • 1994
  • 졸-겔 침지코팅 (dipcoating) 또는 가압 졸-겔 코팅 (pressurized coating) 법으로 제조한 $\gamma-Al_2O_3, SiO_2, TiO_2$ 및 aluminosilicate 복합막에 대하여 $CO_2$, He, $N_2$, 및 $O_2$ 기체 투과율과 $CO_2$ 분리계수를 측정하였다. 이들 막을 통한 모든 기체의 이동은 Knudsen 유동이 지배적이었으며 $CO_2/N_2$의 분리계수는 0.9 ~ 1.1 정도로 Knudsen 분리계수 ($CO_2/N_2$의 경우 0.8)보다 약간 높은 값을 보여주었다. $CO_2$ 분리계수를 향상시키기 위하여 silane coupling 및 산화물 도핑법에 의한 복합막의 표면개질을 시도하였으며 분리막의 재질 및 표면개질 조건에 따른 $CO_2/N_2$ 분리계수 변화를 측정 비교하였다. Silane coupling에 의한 표면개질이 $CO_2$의 표면 친화성 (affinity)에 의한 표면확산속도를 증가시키기 때문에 $CO_2$ 분리에 있어서 산화물 도핑에 의한 표면개질보다 더욱 효과적이었다.

  • PDF

A Study on the Treatment of Pickled Radish Wastewater Using Surface-modified Membrane (표면개질 분리막을 이용한 단무지폐수 처리에 관한 연구)

  • Seon, Yong-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.64-78
    • /
    • 2011
  • Surface of hydrophobic polyethylene membrane was modified to become hydrophilic by ion beam irradiation. Submerged membrane filtration reactors contained pristine membrane or surface-modified membrane and the influent to reactors was pickled radish wastewater. The objectives of this study was to investigate the variation of flux and pressure and the characteristics of pollutant removal such as organics, suspended solids and nutrients with time. The result of experiments using intermittent pristine membrane showed the occurrence of severe fouling by increasing permeate pressure rapidly in case of pickled radish wastewater but in synthetic wastewater, this phenomenon was not occurred. In experiments of variation flux after chemical cleaning and water cleaning in pristine membrane, chemical cleaning must be necessary for renewals of pollutant membrane. Performance of intermittent operation is higher than that of continuous operation. Reaching fouling time in the case of surface-modified membrane is 6 times as long as pristine membrane. According this reason, replacement expense of surface-modified membrane could be 1/6 of that of pristine membrane. Effluent from this process was relatively good water quality and performance in the removal efficiency of SS, nitrogen and phosphorus was particularly higher.

Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes (PTFE 막의 표면 개질 방법)

  • Jun Kyu Jang;Chaewon Youn;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this review, surface modification methods of hydrophobic poly(tetrafluoroethylene) (PTFE) membrane are introduced and their improved hydrophilicity results are discussed. Fluoropolymer based membranes, represented by PTFE membranes have been used in various membrane separation processes, including membrane distillation, oil separation and gas separation. However, despite excellent physical properties such as chemical resistance, heat resistance and high mechanical strength, the strong hydrophobicity of PTFE membrane surface has become a challenging factor in expanding its membrane separation application. To improve the separation performance of PTFE membranes, wet chemical, hydrophilic coating, plasma, irradiation and atomic layer deposition are applied, modifying the surface property of PTFE membranes while maintaining their inherent properties.

Current Research Trends on Surface Modification of Pressure-driven Membranes for Fouling Mitigation (압력 구동 기반 분리막의 막 오염 저감을 위한 표면 개질 방법 최신 연구 동향)

  • Jun, Byung-Moon;Lee, Hyung Kae;Kim, Woo Jeong;Park, Jihun;Kim, Jong Hyeok;Kwon, Young-Nam
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Fresh water is an important resource for humans, and pressure-driven membrane technology has been widely known as an energy-efficient method to obtain water resource. However, membrane fouling phenomenon, which is one of the major issue during operation, deteriorates membrane permeability. These fouling is usually affected by interaction between surface of membrane and various foulants, therefore, modification of membrane's surface is one of the methods to improve fouling-resistance. This review focuses on the method to modify surface of pressure-driven membranes such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). Specifically, there are two different surface modification methods: (1) adsorption and coating as the physical modification methods, (2) cross-linker, free radical polymerization (FRP), atom transfer radical polymerization (ATRP), plasma/UV-induced polymerization as the chemical modification methods. This review introduces the physico - chemical surface modification methods reported in recent papers and suggests research directions for membrane separation which can increase membrane fouling resistance.

Membrane fouling reduction by low temperature plasma treatment

  • 강민수;김성수;전배혁
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.56-58
    • /
    • 1997
  • 최근 polyolefin계열의 고분자 분리막이 많이 사용되고 있는데 특히 그 중 polypropylene막은 특성상 내약품성 및 내열성이 뛰어나 막 손상이나 성능 저하가 비교적 적은 고분자 막으로 평가되고 있다. 그러나 재질의 소수성 특성 때문에 심각한 fouling을 유발하게 되어 이를 방지하기 위해 막 표면을 hydrophilic agent로 개질 시켜 fouling을 제어하는 기술이 진행되고 있다. 일반적으로 막 재질을 개질 시키기 위하여 sulfonating agents, ozone, 그리고 hydrophilic monomer등을 grafting하는 방법들이 사용되고 있는데, 이는 공정상의 어려움이 있고 완벽한 친수성의 부여를 기대하기가 어렵다. 또한 막 기공 구조의 변화와 붕괴를 초래한다는 단점이 있다. 이밖에 hydrophilizing agent 등을 이용하여 wetting시킴으로써 일시적인 친수화 처리를 하는 방법이 있다. 그러나 이 방법은 membrane matrix로 부터 hydrophilizing agent가 새어 나가므로 영구적으로 사용할 수 없으며, 특히 의료용 분리막으로 이용될 경우 유출된 hydrophilizing agent가 cell membrane을 공격하여 cell 분해와 같은 인체에 해로운 결과를 초래하기 때문에 부적당하다. 최근 들어 저온 plasma를 이용한 표면 개질의 방법이 연구되고 있는데, 이는 plasma가 고분자 물질의 구조나 화학적 반응성과는 상관없이 모든 고분자 물질의 표면을 일정하게 개질 시킬 수 있으며 여타의 다른 방법들과는 달리 막 제조시 residual solvent의 문제점과 swelling의 문제점들이 발생하지 않는 장점 때문에 최근 각광받고 있는 기술 중의 하나이다. 또한 다른 방법에 비해 막과 plasma와의 강한 흡착력 때문에 영구적 친수성을 가지게 할 수 있다. 본 연구에서는 저온 plasma를 이용한 표면 개질이 막의 친수성 향상 및 fouling 방지에 미치는 영향에 대하여 조사하였다.

  • PDF

Surface Modification of Nanofiltration Membrane with Silane Coupling Agents for Separation of Dye (실란 표면 개질된 나노복합막의 염료 분리 특성)

  • Park, Hee Min;Lim, Jee Eun;Kim, Seong Ae;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.414-423
    • /
    • 2018
  • In this study, the commercial nanofiltration membranes were modified with octyltrimethoxysilane(OcTMS) and (3-aminopropyl)trimethoxysilane (APTMS) to improve fouling resistance and to separate dye. The chemical structure and binding energy of elements of silane-deposited surface were analyzed using XPS analysis. And the morphology and hydrophilicity property of silane-modified NF membrane were analyzed using FE-SEM, EDX, AFM, and contact angle. The surface charge of silane-modified NF membrane was characterized by zeta potentiometer analyzer. As a result, silane-modified NF membrane improved fouling resistance about 2 times as compared with that of the commercial membrane. And the silane-modified NF membranes effectively were removed cation dye over 98%.

Surface Modification of Reverse Osmosis Membrane with Diphenylamine for Improved Chlorine and Fouling Resistance (Diphenylamine에 의해 표면개질된 역삼투막의 내염소성 및 내오염성 향상)

  • Kwon, Sei;Jee, Ki Yong;Lee, Yong Taek
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.439-449
    • /
    • 2013
  • This study investigated the aromatic polyamide reverse osmosis membrane was modified with diphenylamine (DPA) for enhanced chlorine and fouling resistance and how to optimize. DPA has high reactivity and thermo chemical stability. The performance of a modified membranes was investigated and its surface analyzed using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The experiment was conducted while changing the conditions of temperature and DPA solution concentration.

Effect of Fluidized Bed Powdered Activated Carbon Impregnated by Iron Oxide Nano-particles on Enhanced Operation and NOM Removal of MF Membrane System (산화철 나노입자 표면개질 분말활성탄 유동층에 의한 MF 막 분리 공정의 운전 및 NOM 제거 효율 향상)

  • Kim, Sung-Su;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.332-339
    • /
    • 2011
  • Effects of powdered activated carbon impregnated by iron oxide nano particle (Impregnated PAC) on the microfiltration (MF) membrane system performance in NOM removal from water were investigated in this study. A fluidized bed column was employed as a pretreatment of MF membrane process. The Impregnated PAC bed was stably maintained at an upflow rate of 63 m/d without leakage of the Impregnated PAC particles, which provided a contact time of 29 minutes. A magnetic ring at the upper part of the column could effectively hold the overflowing discrete particles. The Impregnated PAC column demonstrated a significant enhancement in the MF membrane performance in terms of fouling prevention and natural organic matter (NOM) removal. Trans-membrane pressure of the MF membrane increased to 41 kPa in 98 hours of operation, while it could be maintained at 12 kPa with the Impregnated PAC pretreatment. Removal of NOM determined by dissolved organic carbon and UV254 was also enhanced from 46% and 51% to 75% and 84%, respectively, by the pretreatment. It was found that the Impregnated PAC effectively removed a wide range of different molecular-sized organic compounds from size exclusion analysis.

Cycling Performances of Lithium-Ion Polymer Cells Assembled with Surface-Modified Separators Containing Aluminum Fluoride (불화 알루미늄을 포함하는 표면 개질된 분리막으로부터 제조되는 리튬이온폴리머전지의 싸이클 특성에 관한 연구)

  • Eo, Seung-Min;Kim, Dong-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.125-129
    • /
    • 2008
  • Rechargeable lithium-ion polymer batteries have been considered to be next-generation power sources for portable electronic devices and electric vehicles. In this work, we tried to improve the cycling performances of lithium-ion polymer cells by coating aluminum fluoride and acrylonitrile-methyl methacrylate copolymer to the polyethylene separator. It was found that the addition of aluminum fluoride to the surface-modified separator reduced the interfacial resistances and thus the cell exhibited a less capacity fading and better high rate performance. The cell showed an initial discharge capacity of 150 mAh/g and good capacity retention at 0.5 C rate.