• 제목/요약/키워드: 표류 운동

검색결과 47건 처리시간 0.023초

비선형 선박운동을 고려한 대파고 파랑 중 조종성능에 대한 연구 (Effects on Nonlinear Ship Motions on Ship Maneuvering in Large Amplitude Waves)

  • 서민국;김용환;김경환
    • 대한조선학회논문집
    • /
    • 제48권6호
    • /
    • pp.516-527
    • /
    • 2011
  • This paper considers a numerical analysis of ship maneuvering performance in the high amplitude incident waves by adopting linear and nonlinear ship motion analysis. A time-domain ship motion program is developed to solve the wave-body interaction problem with the ship slip speed and rotation, and it is coupled with a modular type 4-DOF maneuvering problem. Nonlinear Froude-Krylov and restoring forces are included to consider weakly nonlinear ship motion. The developed method is applied to observe the nonlinear ship motion and planar trajectories in maneuvering test in the presence of incident waves. The comparisons are made for S-175 containership with existing experimental data. The nonlinear computation results show a fair agreement of overall tendency in maneuvering performance. In addition, maneuvering performances with respect to wave slope is predicted and reasonable results are observed.

표류 및 파랑중 운동 모형시험을 통한 기상기준 평가 대체안 고찰 (A Review and Analysis on the Interim Guidelines for Alternative Assessment of the Weather Criterion by Drifting and Motion Test in Waves)

  • 윤현규;김선영;김진하;김영식;홍사영
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.529-537
    • /
    • 2006
  • International Maritime Organization (IMO) is planning to include the Alternative Assessment of the Weather Criterion in the new Intact Stability (IS) Code to be revised. In this study, the procedure of the model test in the Interim Guidelines was reviewed by carrying out the model test and analyzing the test results. For this purpose, RO/RO passenger ship whose ratios of breadth to draft and the height of weight to draft were above 3.5 and above 0.6 respectively was selected as a test ship. Drifting test and motion test in regular waves were performed to estimate the hydrodynamic heeling lever and roll-back angle. Motion tests in waves were carried out in the three wave steepness conditions to measure roll-back angle and examine the feasibility of so called, the Three-step method. Using the test data, satisfaction of the Weather Criterion was assessed for the test ship by using the alternative method and compared with the current method.

안벽에 계류된 선박의 비선형 운동응답 (Nonlinear Motion Responses of a Moored Ship beside Quay)

  • 이호영;임춘규;유재문;전인식
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

유한(有限)깊이의 물에 떠있는 주상체(柱狀體)에 작용(作用)하는 횡표류력(橫漂流力) -운동량(運動量) 이론(理論) 방법(方法)- (Lateral Drifting Force on a Cylinder in Water of Finite Depths -Far Field Method-)

  • 이기표
    • 대한조선학회지
    • /
    • 제20권2호
    • /
    • pp.37-42
    • /
    • 1983
  • This paper presents a procedure within the framework of linear potential theory for predicting the lateral drifting forces on a cylinder floating on the free surface of a finite depth water. The disturbance of a regular incident wave caused by the presence of the floating body is represented by the sum of the diffracted and radiated wave potentials, which are determined by using Green's theorem. The lateral drifting forces are calculated by use of momentum theorem, and the scattered waves are expressed in their asymptotic forms. The computed lateral drifting forces on a Lewis form cylinder(b/T=1.25, $\sigma$=0.95) for water depth to draft ratio of 5.0 are compared with the Kyozuka's experimental results for a deep water, and found to be in good agreement. The water depth effects on drifting forces of the same model are also calculated.

  • PDF

표류(漂流)를 고려한 선체운동(船體運動) (The Effect of The Drift Velocity on The Ship Motion)

  • 황종흘;김용직
    • 대한조선학회지
    • /
    • 제18권3호
    • /
    • pp.29-38
    • /
    • 1981
  • In general the drift result in ship heeling, thus it seems to be necessary to analyze the ship motion by considering both the drifting and heeling phenomena. In this paper, a drift velocity and a heeling angle are given as prior conditions, and then within the linear potential theory the hydrodynamic coefficients and wave exciting forces and moments are derived for a ship advancing and drifting with constant speeds. And numerical calculations are preformed for a cylindrical body of shiplike cross section at zerp forward velocity. The 2-D hydrodynamic forces and moments of a heeled cylinder are calculated by using the Frank Close-Fit method. These numerical results for the oscillating cylinder without drift velocity have shown better agreements with experimental data than the numerical results of Kobayashi[2]. The motion responses for a drifting cylinder are calculated ignoring the drift velocity effect in the free surface condition. The accuracy of these calculations can not be verified, because the experimental data are not available. Through these numerical calculations to so concluded that drift velocity effects on the body motion are signiffcant.

  • PDF

유한수심(有限水深)의 해상(海上)에서 규칙파(規則波)에 놓인 구(球)에 작용(作用)하는 표류력(漂流力)(I) -운동량(運動量) 이론(理論) 방법(方法)- (Drift Forces on a Freely-Floating Sphere in Water of Finite Depth(I) -Momentum Theorem Method-)

  • 최항순;오태명
    • 대한조선학회지
    • /
    • 제20권4호
    • /
    • pp.33-40
    • /
    • 1983
  • The drift force acting on a freely-floating sphere in water of finite depth is studied within the framework of a linear potential theory. A velocity potential describing fluid motion is determined by distribution pulsating sources and dipoles on the immersed surface of the sphere. Upon knowing values of the potential, hydrodynamic forces are evaluated by integrating pressures over the immersed surface of the sphere. The motion response of the sphere in water of finite depth is obtained by solving the equation of motion. From these results, the drift force on the sphere is evaluated by the momentum theorem, in which a far-field velocity potential is utilized in forms of Kochin function. The drift force coefficient Cdr of a fixed sphere increases monotononically with non-dimensional wave frequency ${\sigma}a$. On the other hand, in freely-floating case, the Cdr has a peak value at ${\sigma}a$ of heave resonance. The magnitude of the drift force coefficient Cdr in the case of finite depth is different form that for deep water, but the general tendency seems to be similar in both cases. It is to note that Cdr is greater than 1.0 when non-dimensional water depth d/a is 1.5 in the case of freely-floating sphere.

  • PDF

모리슨 항력을 고려한 파랑 중 TLP 거동 특성 연구 (Numerical Study on Wave-Induced Motion Response of Tension Leg Platform in Waves)

  • 조윤상;남보우;홍사영;김진하;김현조
    • 한국해양공학회지
    • /
    • 제28권6호
    • /
    • pp.508-516
    • /
    • 2014
  • A numerical method to investigate the non-linear motion characteristics of a TLP is established. A time domain simulation that includes the memory effect using the convolution integral is used to consider the transient effect of TLP motion. The hydrodynamic coefficients and wave force are calculated using a potential flow model based on the HOBEM(higher order boundary element method). The viscous drag force acting on the platform and tendons is also considered by using Morison’s drag. The results of the present numerical method are compared with experimental data. The focus is the nonlinear effect due to the viscous drag force on the TLP motion. The ringing, springing, and drift motion are due to the drag force based on Morison's formula.

해상관측시설을 위한 파랑하중과 계류계 해석 -모래중에 뭍힌 원형파일의 수평력 추정방법을 중심으로- (Analysis of Wave Load and Mooring System for Ocean Monitoring Facilities - About an estimation method for horizontal force of circular pile in sand -)

  • 윤길수;김용직;김동준;강신영
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제1권1호
    • /
    • pp.102-111
    • /
    • 1998
  • 해양관측시설은 고정식과 부유식으로 나뉘는데 본 고에서는 부유식 해상관측시설과 관련된 파랑하중 및 계류계에 대해 다루었다. 부유식 해상관측시설의 일 예에 대해 운동계산과 표류력 계산을 수행하고 고찰하였다. 또한 계류앵커의 일종인 원형 파일앵커가 수평력을 받는 경우의 모형실험과 파주력 계산을 위한 프로그램을 작성하여 그 계산결과와 비교 고찰하였다. SCUBA 활동으로 설치가능한 파일앵커의 파주력 추정에 기여할 것으로 기대된다.

  • PDF

심해 계류인장각 플랫폼의 모형시험 연구(II) - 모형시험 및 해석 (The Study on Model Test of Tension Leg Platform(II) - Model Test & Analysis)

  • 김진하;홍사영;최윤락;홍섭;김현조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.69-74
    • /
    • 2000
  • Linear and nonlinear motion responses of a Tension Leg Platform(TLP) was investigated by model tests. The model tests were carried out at KRISO's Ocean Engineering Basin which has a deep pit of which diameter and depth are 5 meters and 12.5 meters, respectively. Optical sensors were used for measuring drift motions, and a set of accelerometers were employed for analyzing wave frequency motions. ISSC TLP was chosen as the model for the present study. Scale ratio was 1/65 and elastic modelling of tether system were conducted. Very good agreement was obtained between experimental results and theoretical calculations not only in linear motion responses but tension responses, nonlinear wave drift force and double frequency excitations.

  • PDF

안벽에 계류된 선박에 대한 비선형 운동응답 (Nonlinear Motion Responses for A Moored Ship beside Quay)

  • 이호영;임춘규;유재문;전인식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.172-178
    • /
    • 2003
  • As a typoon gets into harbour, a moored ships shows erratic motions and even mooring line failures is occurred. Such troubles may be caused by harbour resonance phenomena, result in large motion amplitudes at law frequency, which is closed to the natural frequency of the moored ship. The nonlinear motions of a moored ship beside quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from emperical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

  • PDF