• Title/Summary/Keyword: 표류오차 보정

Search Result 5, Processing Time 0.021 seconds

Analysis of Transfer Gyro Calibration Error Budget (전이궤도 자이로보정 오차버짓 해석)

  • Park, Keun-Joo;Yang, Koon-Ho;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.36-43
    • /
    • 2010
  • A GEO satellite launched by Arian 5 ECA launcher will be located in a transfer orbit where it requires several Apogee burn maneuvers to reach the target orbit. To obtain the required performance of Apogee burn maneuvers, a calibration of gyro drift error needs to be performed before each maneuver. In this paper, a unique gyro calibration scheme which is applied to COMS is described and the calibration error budget analysis is performed.

SIFT Weighting Based Iterative Closest Points Method in 3D Object Reconstruction (3차원 객체 복원을 위한 SIFT 특징점 가중치 기반 반복적 점군 정합 방법)

  • Shin, Dong-Won;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.309-312
    • /
    • 2016
  • 최근 실세계에 존재하는 물체의 3차원 형상과 색상을 디지털화하는 3차원 객체 복원에 대한 관심이 날로 증가하고 있다. 3차원 객체 복원은 영상 획득, 영상 보정, 점군 획득, 반복적 점군 정합, 무리 조정, 3차원 모델 표현과 같은 단계를 거처 통합된 3차원 모델을 생성한다. 그 중 반복적 점군 정합 방법은 카메라 궤적의 초기 값을 획득하는 방법으로서 무리 조정 단계에서 전역 최적 값으로의 수렴을 보장하기 위해 중요한 단계이다. 기존의 반복적 점군 정합 (iterative closest points) 방법에서는 시간이 지남에 따라 누적된 궤적 오차 때문에 발생하는 객체 표류 문제가 발생한다. 본 논문에서는 이 문제를 해결하기 위해 색상 영상에서 SIFT 특징점을 획득하고 3차원 점군을 얻은 뒤 가중치를 부여함으로써 점 군 간의 더 정확한 정합을 수행한다. 실험결과에서 기존의 방법과 비교하여 제안하는 방법이 절대 궤적 오차 (absolute trajectory error)가 감소하는 것을 확인 했고 복원된 3차원 모델에서 객체 표류 현상이 줄어드는 것을 확인했다.

  • PDF

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

Gyrocompass Correction and Pointing Accuracy Improvement of the Ship-Borne Mobile Down Range Antenna for Launcher Telemetry (우주발사체 텔레메트리용 해상 이동형 다운레인지 안테나의 자이로컴퍼스 보정과 포인팅 정확도 향상)

  • Lee, Sun-Ik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.532-541
    • /
    • 2014
  • The ship-borne mobile down range telemetry antenna system having 4.6 m reflector antenna and 3-axis mounting structure at S-band requires the precise pointing accuracy at sea for the launch mission. Using the LEO satellites tracking, a method to determine and verify the antenna pointing and tracking performance, and to find the pointing bias which dominantly contributes to the pointing inaccuracy, is presented. Based upon the tests conducted on the Jeju sea and Pacific sea, the pointing bias is determined and its origin is also identified as the drift of the heading angle of the gyrocompass. The applied systematic correction taking into account the pointing bias, and the achieved improvement of the pointing accuracy are shown. Thanks to the correction, it is presented that this antenna tracked the launcher(KSLV-I) stably within the required pointing accuracy in the following KSLV-I third launch.

Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation (동해 해양자료동화시스템에 대한 Argo 자료동화 민감도 분석)

  • KIM, SOYEON;JO, YOUNGSOON;KIM, YOUNG-HO;LIM, BYUNGHWAN;CHANG, PIL-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.119-130
    • /
    • 2015
  • Impacts of Argo temperature assimilation on the analysis fields in the East Sea is investigated by using DAESROM, the East Sea Regional Ocean Model with a 3-dimensional variational assimilation module (Kim et al., 2009). Namely, we produced analysis fields in 2009, in which temperature profiles, sea surface temperature (SST) and sea surface height (SSH) anomaly were assimilated (Exp. AllDa) and carried out additional experiment by withdrawing Argo temperature data (Exp. NoArgo). When comparing both experimental results using assimilated temperature profiles, Root Mean Square Error (RMSE) of the Exp. AllDa is generally lower than the Exp. NoArgo. In particular, the Argo impacts are large in the subsurface layer, showing the RMSE difference of about $0.5^{\circ}C$. Based on the observations of 14 surface drifters, Argo impacts on the current and temperature fields in the surface layer are investigated. In general, surface currents along the drifter positions are improved in the Exp. AllDa, and large RMSE differences (about 2.0~6.0 cm/s) between both experiments are found in drifters which observed longer period in the southern region where Argo density was high. On the other hand, Argo impacts on the SST fields are negligible, and it is considered that SST assimilation with 1-day interval has dominant effects. Similar to the difference of surface current fields between both experiments, SSH fields also reveal significant difference in the southern East Sea, for example the southwestern Yamato Basin where anticyclonic circulation develops. The comparison of SSH fields implies that SSH assimilation does not correct the SSH difference caused by withdrawing Argo data. Thus Argo assimilation has an important role to reproduce meso-scale circulation features in the East Sea.