• Title/Summary/Keyword: 표류각 보정

Search Result 2, Processing Time 0.017 seconds

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

Gyrocompass Correction and Pointing Accuracy Improvement of the Ship-Borne Mobile Down Range Antenna for Launcher Telemetry (우주발사체 텔레메트리용 해상 이동형 다운레인지 안테나의 자이로컴퍼스 보정과 포인팅 정확도 향상)

  • Lee, Sun-Ik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.532-541
    • /
    • 2014
  • The ship-borne mobile down range telemetry antenna system having 4.6 m reflector antenna and 3-axis mounting structure at S-band requires the precise pointing accuracy at sea for the launch mission. Using the LEO satellites tracking, a method to determine and verify the antenna pointing and tracking performance, and to find the pointing bias which dominantly contributes to the pointing inaccuracy, is presented. Based upon the tests conducted on the Jeju sea and Pacific sea, the pointing bias is determined and its origin is also identified as the drift of the heading angle of the gyrocompass. The applied systematic correction taking into account the pointing bias, and the achieved improvement of the pointing accuracy are shown. Thanks to the correction, it is presented that this antenna tracked the launcher(KSLV-I) stably within the required pointing accuracy in the following KSLV-I third launch.