• Title/Summary/Keyword: 폴리우레탄 탄성패드

Search Result 3, Processing Time 0.015 seconds

Evaluation of the Degradation Trend of the Polyurethane Resilient Pad in the Rail Fastening System by Multi-stress Accelerated Degradation Test (복합가속열화시험을 통한 레일체결장치 폴리우레탄 탄성패드의 열화 경향 분석)

  • Sung, Deok-Yong;Park, Kwang-Hwa
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.466-472
    • /
    • 2013
  • The use of a concrete track is gradually growing in urban and high-speed railways in many part of the world. The resilient pad, which is essentially when concrete tracks are used, plays the important role of relieving the impact caused by train loads. The simple fatigue test[1] to estimate the variable stiffness of resilient pads is usually performed, but it differs depending on the practical conditions of different railways. In this study, the static stiffness levels of used resilient pads according to passing tonnages levels were measured in laboratory tests. Also, the simple fatigue test and the multi-stress accelerated degradation test for new resilient pads were performed in a laboratory. The static stiffness of the used pad was compared with the results of tests of usage times and cycles. The results of the comparison showed that the variable static stiffness levels of the used pad were similar to results of the multi-stress accelerated degradation test considering the fatigue and heat load. With a T-NT equation related to the degree of the multi-stress accelerated degradation, a model of multi-stress accelerated degradation for a resilient pad was devised. It was found through this effort that the total acceleration factor was approximately 2.62. Finally, this study proposes an equation for a multi-stress accelerated degradation model for polyurethane resilient pads.

Static and Dynamic Behavior of Disk Bearings under Railway Vehicle Loading (철도차량하중에 의한 디스크받침의 정·동적 거동특성)

  • Oh, Saeh Wan;Choi, Eun Soo;Jung, Hie Young;Kim, Hak Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.469-480
    • /
    • 2006
  • The goal of this study is to ases the static and dynamic behavior of disk bearings under railway vehicle loadings. Several static tests were conducted in a laboratory t bearings, all having the same kind of polyurethane disk as used in the static tests, were installed under a full-sized railway bridge and tested with a running locomotive, the tests results, the static and dynamic stiffness of the disk bearings were estimated and compared. the deformation of the disk bearings under the bridge was measured at varying disk bearing was almost half of that under dynamic loading. In addition, the dynamic stiffness of the fixed disk bearing was 80% higher than that of an expansion disk bearing, since the PTFE in the expansion bearing is displaced. The deformation of the disk bearing did not vary significantly with changes in locomotive's speed. The results of this study can contribute to fast-tracking the formulation of a design technique for disk bearings for railway bridges.

Variation of Natural Frequency and Dynamic Behavior of Railway Open-Steel-Plate-Girder Bridge with Installing Disk Bearings (디스크 받침에 의한 철도 판형교의 고유진동수 및 동적 거동 변화)

  • Choi, Eun Soo;Lee, Hee Up;Kim, Sung Il;Kim, Lee Hyeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Open-steel-plate-girder(OSPG) bridges are one of the most prevalent bridge types among Korean railway bridges. They account for about 40% of all Korean railway bridges. However, the line-type bearings used for OSPG bridges generate several problems with respect to the bridges' dynamic behavior and maintenance. The replacement of the existing bearings with polyurethane disk bearings could be a possible solution to this problem. This type of disk bearing is an elastic bearing using a polyurethane disk. This study estimated the variations in the natural frequency of a bridge when disk bearings were installed and the bridge's dynamic behavior with a running locomotive and running trains. The first natural frequency of the bridge was 3% lower than that of the as-built bridge after the installation of the disk lower, respectively. Also, the second and third frequencies were 7 and 15% lower, respectively. The disk bearings increased the vertical displacement of the bridge, but the pure displacement, excluding the disk deformation, did not vary. The vertical acceleration did not increase when the disk bearing was installed, with trains running. The shear pin in the disk bearing reduced the lateral displacement and the acceleration of the bridge.